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Where we start:Where we start:
the Standard Modelthe Standard Model
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Higgs Discovery (ATLAS and CMS)Higgs Discovery (ATLAS and CMS)
July 4th 2012 (CERN and Melbourne)
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July 2012 – the new bosonJuly 2012 – the new boson

Events weighted according to 
S/B in selected event category

Excellent γγ mass resolution crucial, as 
well as γ-ID to reject jet/π0 background

Inclusive signal/background S/B ~3%
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July 2012 – the new bosonJuly 2012 – the new boson

H  ZZ*  4→ → ℓ
“Golden channel” - excellent mass resolution and S/B~1
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July 2012 – the new bosonJuly 2012 – the new boson

Combining γγ, 4ℓ and WW* channels
Overall significance (end July 2012) 5.9σ
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July 2012 – the new bosonJuly 2012 – the new boson
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>7700 citations!
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The end of physics?The end of physics?
With the H discovery, we can 
identify all the particles in the 
SM with known states

But many questions are raised:
● Is it the SM Higgs boson?
● Is there only one scalar?
● Is the H(125) solely responsible 

for electroweak symmetry-
breaking (EWSB)?

● Why is the H so light?

And we almost learned to stop 
asking the harder questions

● Why 3 generations of fermions?
● Why such different masses?
● Where is grand unification?
● What is dark matter & energy?
● Matter-antimatter asymmetry?
● Extra dimensions? Branes?
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The end of physics?The end of physics?
With the H discovery, we can 
identify all the particles in the 
SM with known states

But many questions are raised:
● Is it the SM Higgs boson?
● Is there only one scalar?
● Is the H(125) solely responsible 

for electroweak symmetry-
breaking (EWSB)?

● Why is the H so light?

And we almost learned to stop 
asking the harder questions

● Why 3 generations of fermions?
● Why such different masses?
● Where is grand unification?
● What is dark matter & energy?
● Matter-antimatter asymmetry?
● Extra dimensions? Branes?

Precision measurements of the 
Higgs sector, and of EWSB in 

general, are mandated

Searches for new physics are 
required to try to resolve these 

– but we do not know the 
energy scale of such beyond-SM 

physics, except for general 
indications that it should be in 

the TeV-scale range
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The LHC and experimentsThe LHC and experiments
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14

LHC ring:
27 km circumference
~100 m underground

CERN main site

Large Large HadronHadron Collider Collider

Proton-proton & heavy-ion collisionsProton-proton & heavy-ion collisions

Lake Geneva Airport
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1232 superconducting main dipoles
Two-in-one coil design
Maximum B field 8.4 T

Cooled to 1.9K with 90 tonnes of LHe

Each beam: 2800 
bunches each 
holding 1011 

protons
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CMS DetectorCMS Detector14000t, 29m long x 15m diameter
13m long 6m-bore solenoid, B = 3.8T

All-silicon tracker
 PbWO

4
 crystal EM calorimeter
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Detector principlesDetector principles

Multiple detector layers measure charged particle momenta (tracks), EM and hadronic 
energies (calorimetry), and provide particle identification from different signatures
Full event: missing transverse momentum balance can be used  sensitive to invisible →
particles (ν, new physics – dark matter?)



D Charlton / Birmingham – October 2017 – Beyond the Higgs Boson Discovery 22

ATLAS DetectorATLAS Detector

~110 M channels, with timing capable of separating particles from adjacent 
bunch-crossings (25ns)

Physical size allows precise momentum measurements and provides material 
depth to absorb TeV-energy jets of hadrons

7000t, 45m long x 25m diameter
Si+transition radiation tracker, 2T solenoid, LAr 

sampling calorimetry, large air-core muon system
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The first decades of LHC operationThe first decades of LHC operation

Run-1: little 
data and low 

energy!

Run-2: 13 TeV,  
much more 

data

Run-3: 14 TeV, 
and doubling 
data again
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Why we went to 13 TeVWhy we went to 13 TeV

σ= ∑
parton flavours a ,b

∫ σ̂ (a ,b)( d L(a , b)

d ŝ )d ŝ

√ ŝ=√ x1 x2 s=M X

“Interesting” processes come from hard 
scattering of partons

● Colliding partons carry a fraction of the proton 
momentum, x

i
 , according to a parton density 

function (“pdf”)
● The partonic centre-of-mass energy is

● Parton-parton luminosity

( d L(a ,b)

d ŝ )

Ratio of parton-parton 
luminosity for pp centre-

of-mass energy (√s)
13 TeV / 8 TeV 

pp

-p-p

a x
2 
p

proton

proton

x
1 
p b

a,b: q, q, g 

√ ŝ
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Total cross-section ratio: σ(13 TeV) / σ(8 TeV)

Why we went to 13 TeVWhy we went to 13 TeV

New physics 
models – 
search 
sensitivity 
grows hugely

Known “rarer” 
processes: yields 
grow significantly 
with energy

All collisions – cross-section grows 20%



D Charlton / Birmingham – October 2017 – Beyond the Higgs Boson Discovery 27



D Charlton / Birmingham – October 2017 – Beyond the Higgs Boson Discovery 28

The first decades of LHC operationThe first decades of LHC operation

Run-1: little 
data and low 

energy!

Run-2: 13 TeV,  
much more 

data

Run-3: 14 TeV, 
and doubling 
data again

We are here
Half-way through the “standard lumi LHC” era in time, 
~ a third of the way in terms of integrated luminosity
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2015 – the restart at 13 TeV2015 – the restart at 13 TeV

Almost like starting a 
brand new 

accelerator: a late 
start in the year, and 

various problems after 
the two-year stop

A slow year...

Integrated luminosity ∫Ldt drives the signal event yield N
obs

N
obs

= σ εexp ∫Ldt

σ: cross-section σ(√s)
εexp: experimental efficiency
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2016 – a great production year2016 – a great production year

More integrated 
luminosity in 2016 
than in all previous 

years together!

Integrated luminosity ∫Ldt drives the signal event yield N
obs

N
obs

= σ εexp ∫Ldt

σ: cross-section σ(√s)
εexp: experimental efficiency
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2017 – another good year2017 – another good year

Higher peak 
luminosity than 

2017, better LHC 
live-time, still 
taking data!

Integrated luminosity ∫Ldt drives the signal event yield N
obs

N
obs

= σ εexp ∫Ldt

σ: cross-section σ(√s)
εexp: experimental efficiency
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W and Z ~1 kHz
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Collision energy (TeV)

Total event rate ~ 1 billion / second
but only ~30 million bunch-crossings per 
second  pileup! (next)→

H ~ 0.5 Hz (produced!)

Output rate to disk:
Run-1 ~ 400 Hz
Run-2 ~ 1 kHz 

Online trigger crucial: factor 
few x 104 reduction

 → Billions of events, PB of data

pp pp

Rates are for LHC 
design luminosity 

of 1034 cm-2 s-1
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“Pileup” is a 
constant issue – but 
the detector copes 

very well, with 
ingenuity in its 
design, and in 

trigger and 
reconstruction
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The trigger challengeThe trigger challenge
Single electron 

trigger

26 GeV E
T
 threshold

Complex trigger menu designed to meet 
varied physics, monitoring and performance 
requirements

● Typically ~2000 active menu items
● Key is to keep stable, well understood, 

main primary triggers
● Use as low energy thresholds as possible to 

keep efficiencies as high as possible
● Small and active community manages 

trigger menus to optimise physics output

A few, example, trigger thresholds (GeV)
● E

T
(e) > 24-26

● p
T
(µ) > 24-26

● E
T

miss > 90-110
● E

T
(jet) > 380

● E
T
(γ) > 140

● p
T
(µ1,µ2) > 6,6 + topo/mass selections

● E
T
(γ1,γ2) > 35,25

Single muon trigger
24 GeV p

T
 threshold
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What we’ve learned so What we’ve learned so 
far about the new bosonfar about the new boson
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H(125) production & decayH(125) production & decay
A 125 GeV Higgs boson is a convenient object experimentally – many 
production and decay modes should be measurable

● Production and decay processes probe couplings of H to different particles
● Is it the Standard Model Higgs or not?

Main (single H) 
production diagrams

“ggF” dominates, but multiple SM 
processes accessible

Are there non-SM production modes?

“ggF” ggF
“VBF”

VBF

“ttH” ttH
“VH”

VH

Pr
od

uc
ti

on
 c

ro
ss

-s
ec

ti
on

 (
pb

)
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H(125) production modesH(125) production modes
Combined analysis of Run-1 data:
H(125) production & decays

With assumptions about decays, we can probe 
the different production processes 
(normalised rates “μ” (=1 in SM))

● Able to separate statistically the ggF 
and VBF processes

● Not yet VH or ttH at 5σ
● Observing ttH production is a key Run-2 

goal

These are not yet precision measurements – 
but few percent errors should be 

obtainable with the expected LHC samples
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H(125) production & decayH(125) production & decay
A 125 GeV Higgs boson is a convenient object experimentally – many 
production and decay modes should be observable

● Production and decay processes probe couplings of H to different particles
● Is it the Standard Model Higgs or not?

0.2% H  → γγ

Main decay modes in SM

Discovery channels

Low branching fractions
BF(H ZZ* 4(e/→ → µ)) ~ 0.01%

BF(H→γγ) ~ 0.2%
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H(125) production & decayH(125) production & decay
A 125 GeV Higgs boson is a convenient object experimentally – many 
production and decay modes should be observable

● Production and decay processes probe couplings of H to different particles
● Is it the Standard Model Higgs or not?

0.2% H  → γγ

Main decay modes in SM

Discovery channels

Low branching fractions
BF(H ZZ* 4(e/→ → µ)) ~ 0.01%

BF(H→γγ) ~ 0.2%

Are there non-SM decay 
modes?

H(125) is a completely new type 
of particle coupling to mass – 

may be new “light” particles we 
have not yet seen
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H(125) decay modesH(125) decay modes

Decay signal strengths relative to 
Standard Model “µ” (=1 in SM)

Combining ATLAS and CMS Run-1 
data, observed (at >5σ 
significance)

● H→γγ
● H ZZ( 4→ → ℓ (ℓ=e,µ))
● H WW→
● H ττ→

Run-1 data not yet sensitive to 
the dominant H bb, or rarer, →
decays, such as to second 
generation fermions μ, c, s

No direct evidence of Higgs 
coupling to (any) quarks from 

Run-1 data
Coupling to only one lepton 

species (τ) observed



D Charlton / Birmingham – October 2017 – Beyond the Higgs Boson Discovery 42

H(125) – is it a scalar particle?H(125) – is it a scalar particle?
Spin-analysis of the decay product 
angular distributions

● Is this a spin-parity JP=0+ object?

Test statistic q 
sensitive to 
spin-parity 

(differs for each 
alternative 
hypothesis 

tested) In all cases tested, strong 
preference for 0+ 

assignment

It is consistent with a 0+ 
scalar particle, and not 
with any other model 
tested (at >>95% CL)

H ZZ 4→ → ℓ
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Mass of the H(“125”)Mass of the H(“125”)
Recall that m

H
 is a free parameter in the Standard Model

● To measure m
H
, we use γγ and 4ℓ decays, where we can reconstruct 

the mass event-by-event with high resolution
● Requires excellent understanding of energy scales for lepton/photons

Calibrate detector performance relative to simulations using very large and 
clean samples of decays of particles of known mass, here:

J/ψ,Υ,Z  ee/→ μμ

±0.5%

±1%
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Mass of the H(“125”)Mass of the H(“125”)

Already a precision measurement: 2 per-mille relative error – 
dominated by statistical not systematic uncertainties

Recall that m
H
 is a free parameter in the Standard Model

● To measure m
H
, we use γγ and 4ℓ decays, where we can reconstruct 

the mass event-by-event with high resolution
● Requires excellent understanding of energy scales for lepton/photons
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Measuring H(125) at 13 TeV in Run-2Measuring H(125) at 13 TeV in Run-2

σ = 59.0 +9.7
-9.2 (stat) +4.4

-3.5 (syst) pb
                      (SM: 55.5 +2.4

-3.4 pb)

2015+2016

2015+2016

ATLAS-CONF-2016-079

2015+2016
ATLAS-CONF-2016-067

ATLAS-CONF-2016-081

Clear signals in γγ and 4ℓ
 → combined σ(pp H) at 13 TeV→
 → overall significance at 13 TeV ~10σ
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First evidence for H b→First evidence for H b→ bb

Hunt for H b→ b decay, produced with a W or 
a Z boson

● H  bb dominant Higgs decay in SM: BR~58%→

2015+2016 

Z
b

→
b

H b→ b

Signal strength relative to SM 
expected value:

Significance 3.5σ (expected 3.0σ)

First evidence for H decay to 
quarks - observing this at 5σ 
remains a key goal for Run-2
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H→H→μμ – rare decay: 2μμ – rare decay: 2ndnd generation! generation!

With full 2015+2016 data, look for a 
peak in dimuon mass spectrum

● Event categories improve sensitivity

No excess observed  place limits on →
signal strength μ

S
 relative to Standard 

Model, combine also with (weaker) Run-
1 results:

μ
S
 < 2.8 at 95% CL (2.9 expected)

PRL 119 (2017) 051802

2015+2016 

Inclusive distribution

Distribution 
in one of the 
eight event 
categories

Inclusive distributionInclusive distributionInclusive distribution

2015+2016 
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H→H→μμ – rare decay: 2μμ – rare decay: 2ndnd generation! generation!

With full 2015+2016 data, look for a 
peak in dimuon mass spectrum

● Event categories improve sensitivity

No excess observed  place limits on →
signal strength μ

S
 relative to Standard 

Model, combine also with (weaker) Run-
1 results:

μ
S
 < 2.8 at 95% CL (2.9 expected)

PRL 119 (2017) 051802

2015+2016 

Inclusive distribution

Distribution 
in one of the 
eight event 
categories

Inclusive distributionInclusive distributionInclusive distribution

2015+2016 

Still a way to go here – precise 
measurements of Higgs couplings to 
any second generation fermion will 
require much more data (  HL-LHC)→
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A panoply of measurementsA panoply of measurements
(QCD and Electroweak)(QCD and Electroweak)
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Consistency between results using
● W ev or W→ →µv decay mode
● Different mass-sensitive 

variables p
T
(ℓ) or m

T
● Different ℓ-charge signs

W-boson massW-boson mass

Measurement precision of 19 MeV 
equals best previous measurement, 

from CDF at the Tevatron

This is just the start for m
W
 at LHC

Combining the two channels, 
charges and methods, find overall:
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Electroweak precision testElectroweak precision test
Within the SM framework, the precise value of m

W
 is 

related to other quantities via:

Where Δr includes radiative effects (loops), and so 
depends on (e.g.) m

H
 and m

top

Fits to precision electroweak data 
from LEP/SLD and others, plus the 

LHC m
H
, provide an indirect 

prediction of m
W
 and m

top
 

(“indirect measurement in the 
framework of the SM”)
Compared here to ATLAS 

measurements of W and top masses
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Run-1 puzzle to describe inclusive diboson cross-sections
● Measurements tended to lie above NLO calculations

NNLO calculations  ~20% corrections and better agreement→

Example:
WZ leptonic decays

NNLO calculations 
describe data much 

better than NLO

This run-1 puzzle appears 
to be solved!

Massive diboson productionMassive diboson production

7% precisionarXiv:1606.04017

NNLO

NLO

WZ→ℓvℓℓ

NLO – Next-to-leading order 
calculations – include first 
order of QCD corrections 
(additional gluons in 
diagrams)
NNLO – Next-to-next-to-
leading order
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γ, W, Z top quark H

dibosons

tr
ib

os
on

s

ttV

QCD
jetspp
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Searching for (more) new Searching for (more) new 
physicsphysics

a.k.a. Beyond-the-SM, BSM, searchesa.k.a. Beyond-the-SM, BSM, searches

There are far too many to describe (hundreds of results) – I pick just There are far too many to describe (hundreds of results) – I pick just 
one of my favouritesone of my favourites
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Search for new physics in 
dijet invariant mass 
spectrum

Dijet resonance searchDijet resonance search

Examples (at 95% CL):

m(q*) > 6.0 TeV
(Cf Run-1: 4.1 TeV)

m(W*) > 3.4 TeV and not 
within 3.77-3.85 TeV Dijet mass

2015+2016 

arxiv:1703.09127

https://arxiv.org/abs/1703.09127
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Highest-mass central dijet event (2016) - m(jj)=8.2 TeV
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Searches for Dark Matter are ongoing in Run-2
● Generic production with other objects
● Model-specific searches in SUSY models
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SUSY SearchesSUSY Searches
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The futureThe future
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HL-LHC 14 TeV

“Run-2” 13 TeV “Run-3” 14 TeV

“LS-2” in 2019-2020

Upgrade of the LHC injectors
Training of LHC magnets to the 

field needed for 14 TeV operation
Significant upgrades to the 

experiments - “Phase-I”
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ATLAS Phase-I upgradesATLAS Phase-I upgrades
LHC luminosity (collision rate) has 
exceeded LHC design already by 40%

Could exceed design luminosity by a 
factor ~2.5 in “Run-3”

 → Phase-1 upgrades give us better first-level 
trigger performance (better selectivity in 
hardware within ~3 µs), and also to provide 
better tracking close to the interaction point

Main ATLAS Phase-I upgrades:
● New inner pixel layer installed already in 2014

● Having impact e.g. for H bb analysis→
● New track & calorimeter trigger electronics
● New “small muon wheel” (9.3m diameter)

ATLAS IBL insertion

NSW design
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HL-LHC 14 TeV

“Run-2” 13 TeV “Run-3” 14 TeV

HL-LHC: “levelled” luminosity
5-7 times the original design, 

until ~2035

Accumulate 10x more data than 
in Runs 1-3 combined – era of 

high precision

Must upgrade detectors!

HL-LHC accelerator upgrade was 
approved by CERN Council in 
June 2016 (cost: 930M CHF)
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HL-LHC: precision Higgs physicsHL-LHC: precision Higgs physics
All measurements in Higgs sector will 
benefit strongly from more statistics, 
right through HL-LHC programme

● Start measuring rarer decays (SM, BSM?)
● Higher precision measurements

● Probe Higgs couplings at ~percent level 
to look for sign of new physics in loops

● Search for anomalous production etc etc

Two different models of uncertainty 
evolution with luminosity

2%
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HL-LHC: di-Higgs productionHL-LHC: di-Higgs production
The Higgs potential V is fundamental to the “Brout-Englert-Higgs mechanism” 

 non-zero scalar field → in vacuo

Essential to explore shape of the potential – beyond quadratic term  → m
H

 → also to throw light on electroweak phase-transition in early universe

Matthew McCollough
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HL-LHC: di-Higgs productionHL-LHC: di-Higgs production

Indications we can measure HH rate 
at ~30-50% level with the full HL-LHC 

data sample – maybe better
 → sensitivity to anomalous large λ

Studies continue...

Matthew McColloughH pair production provides this 
sensitivity, in principle
Range of studies going on to 
assess λ sensitivity

● Many channels
● High backgrounds – will need 

to be measured from the data
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HL-LHC: extended search reachHL-LHC: extended search reach

With ten times the luminosity, 
mass reach for new particles 
increases by roughly 30% for 
many processes

For new processes with lower 
cross-sections, the sensitivity 
gain can be much higher

● e.g. weakly-coupled dark 
matter models

Example shown: Electroweak 
production of SUSY partners of 

electroweak bosons



D Charlton / Birmingham – October 2017 – Beyond the Higgs Boson Discovery 68

Current ATLASCurrent ATLAS



D Charlton / Birmingham – October 2017 – Beyond the Higgs Boson Discovery 69

New central tracker (ITk)

Massive readout electronics rework (LAr, Tile, Muons)
New trigger/readout architecture

New muon chambers (e.g. BI RPC)

Phase-IIPhase-II

High-granularity ~30ps 
timing detector option, 
around beam directions
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Phase-II tracking detector: ITkPhase-II tracking detector: ITk

All silicon-sensor tracker: 
● inner layers pixel sensors
● outer layers strip sensors

Sensor and systems R&D ongoing for some years
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ClosingClosing
The LHC is delivering well-beyond-design luminosity, at 13 
TeV pp collision energy in Run-2

● Rich and diverse physics programme (also LHCb, ions … …)
● Many searches for new particles and interactions in progress
● Irrespective of new discoveries, there is a broad precision 

physics programme at ATLAS and CMS

The Higgs boson discovery was just the start of the programme of 
study of the scalar sector at the LHC

● We know now that it is a Higgs scalar, with broadly SM-like properties
● Huge scope for new physics in the scalar sector – we have just 

scratched the surface so far
● Only the LHC will address these questions for the next two decades

The LHC is, and will remain to the mid-2030’s, the 
world’s energy frontier particle collider
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