

Final - and not so final - electroweak results

Dave Charlton The University of Birmingham

SLAC Summer Institute Topical Conference, August 2002

Most of the averages and plots shown were prepared by the LEP electroweak working group – particular thanks are due to them

High Energy e⁺e⁻ Colliders

SLC 1989-1998 $\sqrt{s} \simeq M_{\rm Z}, \sim 20 \ {\rm pb}^{-1}$ e⁻ polarisation $\sim 75\%$

LEP-1 1989-1995 88< \sqrt{s} <94 GeV ~160 pb⁻¹ × 4

LEP-2 1996-2000 130< \sqrt{s} <209 GeV \sim 700 pb⁻¹ \times 4

Millions of Z's, tens of thousands of W's

The Z Lineshape

 $\sigma(e^+e^- \rightarrow f\overline{f})$ measured over $M_Z \pm 3 \text{ GeV}$ Initial-state radiation (ISR): big effect $M_Z = 91.1875 \pm 0.0021 \text{ GeV}$ $\Gamma_Z = 2.4952 \pm 0.0023 \text{ GeV}$

$$\sigma^{0}(\mathbf{Z}^{0} \to f\overline{f}) = \frac{12\pi}{M_{\mathbf{Z}}^{2}} \frac{\Gamma_{\mathrm{ee}}\Gamma_{f\overline{f}}}{\Gamma_{\mathbf{Z}}^{2}}$$

gives access to Γ_{invis} via

 $\Gamma_{\rm Z} = \Sigma \Gamma({\rm Z} \to {\rm vis}) + \Gamma_{\rm invis}$ Using $N_{\nu} = \Gamma_{\rm invis} / \Gamma_{\nu\nu}({\rm SM})$ we find

 $N_{\nu} = 2.9841 \pm 0.0083$

The Z Lineshape: High Statistics!

Z Decay Widths: Heavy Quarks

 $\Gamma_{f\overline{f}} \propto g_{Vf}^2 + g_{Af}^2$ Z lineshape $\longrightarrow e, \mu, \tau, \Sigma q \overline{q}$ Also measure $Z \rightarrow b\overline{b}$, $Z \rightarrow c\overline{c}$ Main b tags: $\tau_B, M_B, B \to \ell X$ High performance multivariate b tags: ϵ from data – "double tag" method 0.19 Preliminary 0.18 R 0 0 <u>S</u>M 68% CL 0.17 95% C 0.16 0.214 0.216 0.218 0.22 R_b^0

Dave Charlton

LEP/SLD Electroweak (5)

Asymmetries at the Z

Asymmetry parameters \mathcal{A}_f

$$\mathcal{A}_{f} \equiv \frac{2g_{Vf}g_{Af}}{(g_{Vf}^{2} + g_{Af}^{2})} = f(\frac{g_{Vf}}{g_{Af}})$$
$$\frac{g_{Vf}}{g_{Af}} = 1 - 4|Q_{f}| \sin^{2} \theta_{\text{eff}}^{f}$$

Various asymmetries:

- forward-backward $A_{FB}^{0,f} = \frac{3}{4}\mathcal{A}_e\mathcal{A}_f$
- tau polarisation $P_{ au}$
- left-right polarisation $A_{LR} = \mathcal{A}_e$
- forward-backward left-right

Superscript 0 denotes "Z-pole" quantities

 A_{FB} measured for e, μ ,au, b and c

Left-Right Polarization Asymmetry

Measured by SLD, polarized e^- beam

Counting experiment:

$$A_{LR} = \frac{(N_L - N_R)}{(N_L + N_R)} \frac{1}{\langle P_e \rangle}$$

 $\langle P_e \rangle$ mean polarization, two independent measures

With $\langle \sqrt{s} \rangle$, convert to $A_{LR}^0 = 0.1514 \pm 0.0022$ Overall, SLD obtain $\sin^2 \theta_{eff}^{lept} = 0.23098 \pm 0.00026$ Most precise measurement of $\sin^2 \theta_{eff}$

Leptonic Couplings

Effective Weak Mixing Angle

Asymmetries mostly measure $\sin^2 \theta_{\mathrm{eff}}^{\mathrm{lept}}$

A posteriori, see that two most precise $\sin^2 \theta_{\mathrm{eff}}^{\mathrm{lept}}$ measurements agree only at 2.9 σ level

Old problem: discrepancy around 3σ for six years, though errors improved by factor 1.5

In context of SM: A^b_{FB} prefers $M_{\rm H}\sim$ 400 GeV — unlike most other observables which prefer low $M_{\rm H}$

Fermion Pairs at LEP-2

LEP-2 Fermion Pair Properties

LEP/SLD Electroweak (12)

W Pair Production

shift $\sigma_{
m WW}$ by $-2.5\pm0.5\%$

 $O(\alpha)$ calculations

Gauge Boson Self-Couplings

SM gauge structure of boson self-couplings demonstrated

W Mass from LEP-2

Primarily from WW \rightarrow qqqq and qq $\ell \nu_{\ell}$

Reconstruct (jet, ℓ) angles and energies

Kin. fit improves resolution:

- (E,p)_{total} = (\sqrt{s} ,0)
- $M_{\mathrm{W}^+} = M_{\mathrm{W}^-}$

Fit to extract $M_{\rm W}$ (+ $\Gamma_{\rm W}$)

Statistical power: $qqqq \simeq qq\ell\nu_{\ell}$

Systematic errors significant

Final-State Interactions

 $\begin{array}{l} \mathsf{WW} \to q q q q \text{ may suffer from "final-state} \\ \texttt{interactions": if the two hadronic W decays don't} \\ \texttt{develop independently} \end{array}$

Non-perturbative hadronisation process: needs models

Models of two types: "colour reconnection" (CR) and Bose-Einstein correlations (BE)

Ongoing work to compare models with data:

- BE between W decay hadrons small, so give low $M_{\rm W}$ shift
- CR studies focus mainly on particle flow but several models give quite different effects

Particle Flow & Colour Reconnection

LEP combination now available, full LEP-2 data Hints of CR effects, data-driven error on $M_{\rm W}(\rm qqqq$ channel) from CR \pm 90 MeV

Dave Charlton

LEP/SLD Electroweak (17)

August 2002

W Mass Results

Good agreement LEP-Tevatron, comparable precision per experiment

In LEP M_{W} average, weight of qqqq channel just 9% Also find $\Gamma_{\rm W}^{\rm LEP} = 2.150 \pm 0.091$ $\Gamma_{\rm W}^{\rm Tev} = 2.115 \pm 0.105$ $\Gamma_{\rm W}=2.135\pm0.069~{\rm GeV}$ 2.3 Preliminary [GeV] _≥ └─ 2.1 SM m m_H Δα 68% CL 2 | 80.2 80.3 80.4 80.5 [GeV] $M_{\rm W}$

Global Electroweak Tests

Use precise LEP/SLD and Tevatron EW data to probe SM

(other inputs from NuTeV and atomic parity violation) SM predictions from ZFITTER and TOPAZ0 electroweak libraries

Parameters:

$M_{\mathbf{Z}}$	measured precisely by LEP-1 Z data
$\alpha_s(M_{ m Z}^2)$	measured precisely by LEP-1 Z data
$\alpha_{em}(M_{\rm Z}^2)$	calculated from low-energy measurements
$M_{ m W}$, $M_{ m t}$	may be either predicted, or put in as measured
$M_{ m H}$	may be predicted in this framework

Predicting $M_{ m W}$ and $M_{ m t}$

LEP-1/SLD Z data, $\alpha_{em}(M_Z^2)$, NuTeV and APV results used to predict M_W , M_t

Compare with direct measurements (Tev/LEP-2), and with SM relation between $M_{\rm W}, M_{\rm t}, M_{\rm H}$

Electroweak fit correctly predicts the masses of the heavy particles (W,top)

Both sets of data prefer a light Higgs in the SM framework

Fit to all Electroweak Data

Full electroweak fit of all results, including $M_{\rm W}$ and $M_{\rm t}$

Overall consistency χ^2 /dof is 29.7/15 (**1.3%** probability)

Large χ^2 contribution from NuTeV, without it fit probability is ${\bf 11\%}$

Standard Model parameters ($M_{\rm H}$ etc) little affected by NuTeV

Go on to see what the SM fit says about $M_{\rm H}$

	Measurement	Pull	(O ^{meas} –O ^{fit})/σ ^{meas} -3 -2 -1 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	-0.24	•
m _z [GeV]	91.1875 ± 0.0021	0.00	
Γ _z [GeV]	2.4952 ± 0.0023	-0.41	-
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	1.63	
R _I	20.767 ± 0.025	1.04	-
A ^{0,I}	0.01714 ± 0.00095	0.68	-
A _I (P _τ)	0.1465 ± 0.0032	-0.55	-
R _b	0.21644 ± 0.00065	1.01	_
R _c	0.1718 ± 0.0031	-0.15	
A ^{0,b}	0.0995 ± 0.0017	-2.62	
A ^{0,c}	0.0713 ± 0.0036	-0.84	-
A _b	0.922 ± 0.020	-0.64	-
A _c	0.670 ± 0.026	0.06	
A _I (SLD)	0.1513 ± 0.0021	1.46	_
$\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm fb})$	0.2324 ± 0.0012	0.87	-
m _w [GeV]	80.449 ± 0.034	1.62	
Γ _w [GeV]	2.136 ± 0.069	0.62	-
m, [GeV]	174.3 ± 5.1	0.00	
sin ² θ _w (νN)	0.2277 ± 0.0016	3.00	
Q _w (Cs)	-72.18 ± 0.46	1.52	
			· · · · · · · · · · · · · · · · · · ·

Summer 2002

-3 -2 -1 0 1 2 3

Constraining the SM Higgs

Fit to all electroweak data in Standard Model framework

Theory uncertainty includes ZFITTER/TOPAZ0 options, partial two-loop calculations

NuTeV has little impact on $M_{\rm H}$ results, but may affect whether to believe the SM fit...

From the fit, obtain $M_{
m H} = 81^{+52}_{-33} \, {
m GeV}$ $M_{
m H} < 193 \, {
m GeV}$ at 95% CL

A Hint of the Higgs?

At LEP-2, main process is $e^+e^- \rightarrow ZH \rightarrow f\overline{f}b\overline{b}$

Rely on good b tagging and mass reconstruction

In September 2000, ALEPH reported an excess (3 events) in the $q\overline{q}b\overline{b}$ channel consistent in mass with a 115 GeV H

LEP run extended for 1 month...

LEP Higgs Search: Final Results

Final data, analyses and calibrations:

- no confirmation of ALEPH $q\overline{q}b\overline{b}$ excess
- no significant excess in final combined sample (P = 8%)
- but extra statistics too limited to exclude a 115 GeV SM Higgs

Sophisticated statistical combination of channels/experiments

Final direct search result: $M_{\rm H} >$ **114.4 GeV (95% CL)** (expected limit 115.3 GeV)

Highlights

Wealth of precise electroweak measurements from LEP and SLD (and the Tevatron)

Amongst hundreds of other results, LEP/SLD have:

- shown there are three light neutrino species
- demonstrated radiative loop corrections
- predicted the top quark mass
- verified SM triple gauge couplings
- put many strong constraints on physics beyond the SM
- indicated where to look for the SM Higgs (and "nearly" found it)...

LEP and SLD have provided a huge step forward for the Standard Model – *but* the Higgs sector waits for another day