Electromagnetism 2 (spring semester 2025)

Lecture 6

Maxwell's equations in free space

- The continuity equation
- ❖ Modification of Ampere's law for non-steady currents
- The displacement current
- * Maxwell's equations of electrodynamics in free space

Previous lectures

Our current (still incomplete) understanding of the equations of electromagnetism in free space:

Gauss law (universally valid)

$$abla ec{E} =
ho/arepsilon_0$$

Faraday's law (universally valid)

$$m{
abla} imes m{ec{E}} = m{-rac{\partial B}{\partial t}}$$

Absence of magnetic poles (universally valid)

$$abla ec{B} = 0$$

Ampere's law (static field only)

$$abla imes ec{B} = \mu_0 ec{j}$$

- Variation of magnetic field gives rise to electric field.
- ❖ Does variation of electric field give rise to magnetic field?

The continuity equation

Conservation of electric charge:

any variation of charge within a fixed volume is due to charges flowing across the surface

$$\int\limits_{S}ec{j}dec{S}=-rac{d}{dt}\int\limits_{V}
ho dV$$

Unit on both sides: [C/s=A]

Divergence theorem:
$$\int\limits_{S} \vec{j} d\vec{S} = \int\limits_{V} \nabla \vec{j} dV$$

Conservation of charge in differential form: (the *continuity equation*)

$$abla ec{j} = -rac{\partial
ho}{\partial t}$$

Let's take the divergence of both sides of Ampere's law:

$$0 = \nabla(\nabla \times B) = \mu_0 \nabla \vec{j} = -\mu_0 \frac{\partial \rho}{\partial t}$$
T1 from lecture 2 Continuity equation

Therefore, Ampere's law applies to steady currents only ($\partial \rho/\partial t = 0$), and requires generalisation

Generalised Ampere's law

To generalise Ampere's law for non-steady currents, let's modify its right-hand side to make its divergence zero.

Gauss law: $\varepsilon_0 \nabla \vec{E} - \rho = 0$. Differentiation over t:

$$0 = arepsilon_0
abla \left(rac{\partial ec{E}}{\partial t}
ight) - rac{\partial
ho}{\partial t} = arepsilon_0
abla \left(rac{\partial ec{E}}{\partial t}
ight) +
abla ec{j} =
abla \left(arepsilon_0 rac{\partial ec{E}}{\partial t} + ec{j}
ight)$$

We have found a quantity $\left(\varepsilon_0 \frac{\partial \vec{E}}{\partial t} + \vec{j}\right)$ which always has current density

zero divergence and is therefore suitable for a modified Ampere's law.

The Ampere-Maxwell law:
$$\nabla imes ec{B} = \mu_0 ec{j} + arepsilon_0 \mu_0 rac{\partial ec{E}}{\partial t}$$
 (*)

Not a proof: there and many ways of removing the contradiction. Any solenoidal field (i.e. such that $\nabla \vec{u} = 0$) can be added to the right-hand side of (*), still satisfying charge conservation.

The displacement current

$$abla imes ec{B} = \mu_0 (ec{j}_C + ec{j}_D) = \mu_0 ec{j}_C + arepsilon_0 \mu_0 rac{\partial ec{E}}{\partial t}$$
 $abla_{\text{C}: conduction current density}$
 $abla_{\text{D}: displacement current density}$

A changing E-field produces B-field: Maxwell's decisive step towards electrodynamics (1865).

It took 30 years after Faraday's discovery of EM induction to postulate the displacement current as a source of magnetic field.

Alternating current in a copper wire [conductivity $\sigma = 6 \times 10^7 (\Omega \cdot m)^{-1}$]

Electric field: $E = E_0 \sin(\omega t)$

Conduction current density: $j_C = \sigma E = \sigma E_0 \sin(\omega t)$

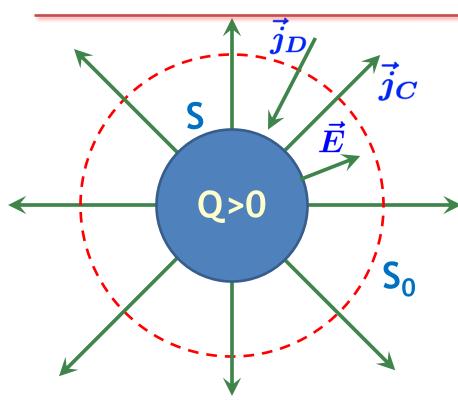
Displacement current density: $j_D = \epsilon_0 \delta E / \delta t = \epsilon_0 \omega E_0 \cos(\omega t)$

The ratio of maximum max conduction to max displacement current:

$$j_{C}^{max} / j_{D}^{max} = \sigma E_{0} / \epsilon_{0} \omega E_{0} \sim 10^{19} \, s^{-1} \, \omega^{-1} \gg 1$$

i.e. j_D is negligible for all frequencies used in practice.

Example 1



A charged sphere discharging into external conductive medium.

By symmetry, \vec{j}_C is directed radially.

What about the \vec{B} field?

By symmetry, tangential component $B_t=0$, and radial component B_R is the same in each point of sphere S.

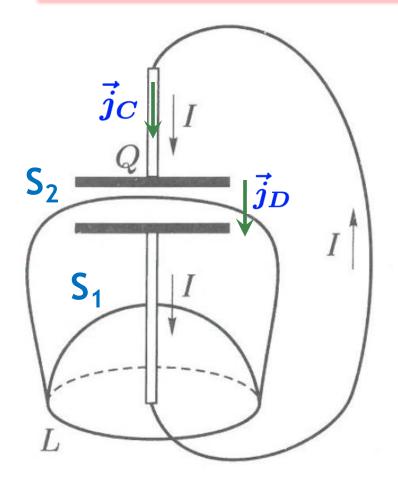
Assuming $B_R \neq 0$ leads to $\int \vec{B} d\vec{S} \neq 0$ We conclude that B=0. S Ampere's law leads to $j_C=0$.

E-field at the surface of the sphere (lecture 1): $E=Q/(4\pi arepsilon_0 R^2)$

Conduction current at surface S_0 is balanced by displacement current:

$$I_D = I_C = rac{dQ}{dt} = 4\piarepsilon_0 R^2 rac{\partial E}{\partial t} \quad igg| J_D = I_D/(4\pi R^2) = arepsilon_0 rac{\partial E}{\partial t}$$

Example 2



Discharge of a parallel-plate capacitor:

$$\oint\limits_{L}ec{B}dec{l}=\mu_{0}\int\limits_{S}(ec{j}_{C}+ec{j}_{D})dec{S}$$

- ❖ For the surface S₁, only the conduction current Ic contributes.
- ❖ For the surface S_2 , there is no conduction current, therefore $I_D=I_C$.

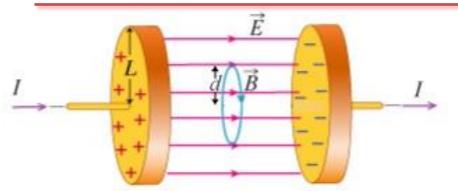
Let's check explicitly the equality $I_D=I_C$:

$$I_C = rac{\partial Q}{\partial t} = A rac{\partial \sigma}{\partial t} = A arepsilon_0 rac{\partial E}{\partial t}$$

By definition,
$$I_D = A arepsilon_0 rac{\partial E}{\partial t} = I_C$$

Lecture 1: $E=\sigma/\epsilon_0$

Example 3



[not discussed in the lecture]

A thin parallel plate capacitor with circular plates of radius R is being charged. Find the magnetic field B(r).

Using axial symmetry, in the absence of conduction current $(j_c=0)$,

$$\oint\limits_{L}ec{B}dec{l}=\mu_{0}\int\limits_{S}(ec{j}_{C}+ec{j}_{D})dec{S}=arepsilon_{0}\mu_{0}\int\limits_{S}rac{dec{E}}{dt}$$

Inside the capacitor (r < R),

$$2\pi rB = arepsilon_0 \mu_0 \cdot \pi r^2 rac{dE}{dt}$$

Outside the capacitor $(r \ge R)$,

$$2\pi rB = arepsilon_0 \mu_0 \cdot \pi R^2 rac{dE}{dt}$$

$$B(r)=rac{1}{2}arepsilon_0 \mu_0 r rac{dE}{dt}$$

$$B(r)=rac{1}{2}arepsilon_0 \mu_0 rac{R^2}{r} rac{dE}{dt}$$

Maxwell's equations in free space

Laws of electrodynamics in free space:

(remember them)

(M1)
$$\nabla \vec{E} =
ho/arepsilon_0$$

(M2)
$$\nabla \vec{B} = 0$$

(M3)
$$\nabla imes \vec{E} = -rac{\partial \vec{B}}{\partial t}$$

(M4)
$$abla imes ec{B} = \mu_0 ec{j} + arepsilon_0 \mu_0 rac{\partial ec{E}}{\partial t}$$

Displacement current density: $\vec{j}_D = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$

The continuity equation,
$$\nabla \vec{j} = -\frac{\partial \rho}{\partial t}$$
, follows from (M1) and (M4).

Discussion and summary

- Maxwell's equations in free space (2 scalar + 2 vector) are equivalent to 8 scalar equations with 10 variables (E_x, E_y, E_z, B_x, B_y, B_z, j_x, j_y, j_z, ρ).
- ❖ Maxwell's equations must be complemented by the equations characterising the media. These will be discussed in lectures 7-12.
- The equations are not symmetric wrt electric and magnetic fields:
 - \checkmark no magnetic poles as sources of B field (M2);
 - \checkmark no magnetic currents as sources of E field (M3).
- ❖ For constant fields ($\frac{\partial E}{\partial t} = \frac{\partial B}{\partial t} = 0$), two independent groups,
 - ✓ electrostatics: div E = ρ/ϵ_0 ; curl E = 0;
 - ✓ magnetostatics: div B = 0; curl B = μ_0 j.