Electromagnetism 2 (spring semester 2025)

Lecture 8

Electric field in dielectric materials

- ❖ The electric displacement field D; relative permittivity
- Gauss law for the D field
- ❖ Boundary conditions for the E and D fields
- Energy density of the electric field

Previous lecture

* Polarisation of LIH dielectric materials, characterised by the electric susceptibility χ_E :

$$ec{P} = rac{1}{\Delta V} \sum_{\Delta V} ec{p_i} = \chi_E \cdot arepsilon_0 \cdot ec{E}$$

❖ Volume distribution of polarisation P is equivalent to the following distribution of surface and volume charges:

$$oldsymbol{\sigma}_{\mathbf{p}} = ec{oldsymbol{P}} \cdot ec{oldsymbol{n}}$$
 and $oldsymbol{
ho}_{\mathbf{p}} = -
abla ec{oldsymbol{P}}$

Electric susceptibility for gaseous dielectrics:

$$\chi_E = n \left(lpha + rac{p^2}{3arepsilon_0 kT}
ight)$$

The two terms are due to *electronic polarisation* and the *alignment of permanent dipole moments* **p** of molecules.

The electric displacement field

Dielectric materials in non-uniform fields: (lecture 7) induced volume polarisation charges with density $ho_{
m p}=ablaec{P}$

In general, dielectrics also carry free charges with a density $ho_{
m f}$

Total charge density: $ho =
ho_{
m f} +
ho_{
m p}$

Gauss law:
$$\nabla \vec{E} = \frac{\rho}{\varepsilon_0} = \frac{1}{\varepsilon_0} \left(\rho_{\mathrm{f}} + \rho_{\mathrm{p}} \right) = \frac{1}{\varepsilon_0} \left(\rho_{\mathrm{f}} - \nabla \vec{P} \right)$$

Therefore $arepsilon_0
abla ec{E} +
abla ec{P} =
ho_{
m f}$ and $abla (arepsilon_0 ec{E} + ec{P}) =
ho_{
m f}$

Let's define the *electric displacement field*:

$$ec{D} = arepsilon_0 ec{E} + ec{P}$$

Gauss law for the D field

Gauss law for the electric displacement field: $|\nabla \vec{D}| = \rho_{\mathrm{f}}$

$$\nabla D = \rho_{\mathrm{f}}$$

This is a generalised version of Maxwell's equation (M1): $abla ec{E} =
ho/arepsilon_0$

In the integral form (lectures 1,2):
$$\int\limits_{S} \vec{D} d\vec{S} = \int\limits_{V}
ho_{\mathbf{f}} dV$$

Using the definition of electric susceptibility, $ec{P}=\chi_{E}\cdotarepsilon_{0}\cdotec{E}$,

$$ec{D} = (1 + \chi_E) \cdot arepsilon_0 ec{E} = arepsilon arepsilon_0 ec{E}$$

where $arepsilon=1+\chi_{E}$ is the *relative permittivity* (aka the dielectric constant) of the medium.

Gauss law for uniform ε : $\nabla \vec{E} = \rho_{\rm f}/(\varepsilon_0 \varepsilon)$

- ❖ The E-field decreases by a factor of €>1 relative to the field produced by the same distribution of free charges in free space.
- \clubsuit Ideal conductors: $\vec{E} = 0$ (lecture 3), therefore $\varepsilon \to \infty$.

Physical meaning

Assumptions behind the idea of a constant ϵ for a dielectric:

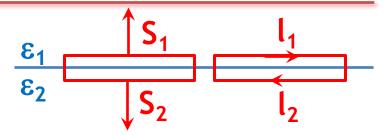
- Linearity: P is proportional to E.
 This breaks down at high electric fields.
- ❖ Isotropy: polarisation vector P is collinear to E.
 NB: some crystals are anisotropic,
 particularly under mechanical stress (the piezoelectric effect).
- Homogeneity: no dependence on the position within material. Most insulators satisfy these conditions in practice (and are known as "LIH dielectrics").

Physical meaning:

- ❖ Electric field E [V/m]: force acting on unit charge.
- ❖ Polarisation P [C/m²]: induced dipole moment per unit volume, a local property of matter.
- ❖ Electric displacement D [C/m²]: introduced to facilitate field calculations in the presence of dielectrics (polarisation charges do not enter the Gauss law for D-field).

Boundary conditions for E and D

Boundary of two dielectrics with relative permittivities ε_1 and ε_2



Gauss law for a very thin "pillbox" cylinder (no free surface charges):

$$\int\limits_{S}ec{D}dec{S}=0$$
 therefore $ec{D}_{1}ec{S}_{1}+ec{D}_{2}ec{S}_{2}=0$

Using $ec{S}_1=-ec{S}_2$, we obtain $ec{D}_1ec{S}_1=ec{D}_2ec{S}_1$ and $igg|D_{1n}=D_{2n}$

$$ig| D_{1n} = D_{2n}$$

More generally, the discontinuity of D_n equals to surface density of free charges:

$$D_{1n} - D_{2n} = \sigma$$

A very thin rectangular loop: infinitely small area, $\int \vec{B} d\vec{S} = 0$. Therefore the Faraday's law,

$$\oint ec{E} dec{l} = ec{E}_1 ec{l}_1 + ec{E}_2 ec{l}_2 = 0$$
 , leads to $egin{bmatrix} E_{1t} = E_{2t} \end{bmatrix}$

$$E_{1t}=E_{2t}$$

Field lines at boundaries

D_n is continuous:

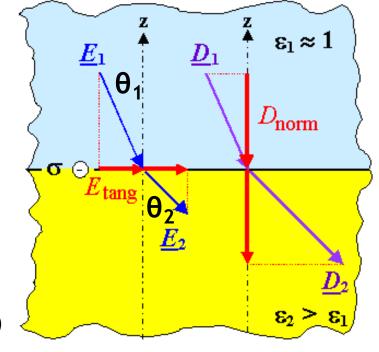
$$\varepsilon_1 E_1 \cos \theta_1 = \varepsilon_2 E_2 \cos \theta_2$$

E_t is continuous:

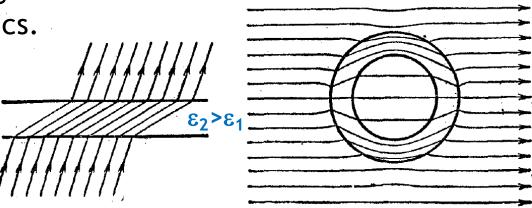
$$E_1\sin\theta_1=E_2\sin\theta_2$$

Therefore
$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{\varepsilon_1}{\varepsilon_2}$$

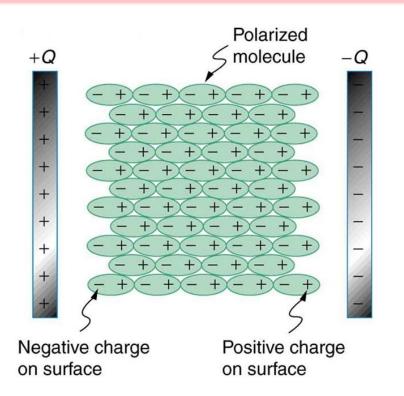
(similar to Snell's law in optics — not by accident!)

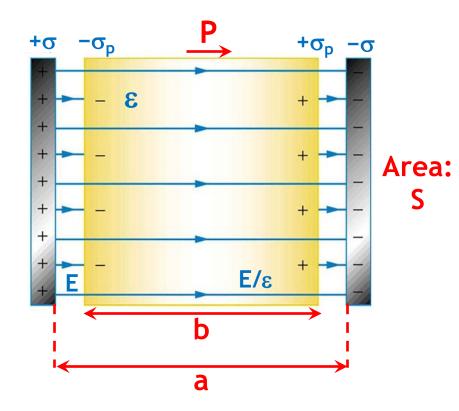


- ❖ Electrostatic field is partially shielded in cavities in high
 € dielectrics.
- Cf. complete shielding in a hollow conductor (Faraday's cage, lecture 3)



A dielectric slab in a capacitor (1)





- \clubsuit The displacement field D is uniform (because D_n is continuous).
- lacktriangle From Gauss law, $D=\sigma$ everywhere inside the capacitor.
- ❖ Therefore $E = D/(\epsilon\epsilon_0)$ is *reduced* by a factor of ϵ in the dielectric.
- ❖ From Gauss law, surface polarisation charge: $\sigma_p = \sigma(\epsilon-1)/\epsilon$.

A dielectric slab in a capacitor (2)

Potential difference between the two plates:

$$V = \int_{0}^{a} E dx = \int_{0}^{a} \frac{D}{\varepsilon_{0} \varepsilon} dx = \frac{D}{\varepsilon_{0}} (a - b) + \frac{D}{\varepsilon_{0} \varepsilon} b = \frac{\sigma}{\varepsilon_{0}} (a - b) + \frac{\sigma}{\varepsilon_{0} \varepsilon} b$$

For b=0 (no dielectric slab),
$$V_1=rac{\sigma a}{arepsilon_0}$$

For b=a (slab occupying all space),
$$V_2=\frac{\sigma a}{\varepsilon_0 \varepsilon}$$
 : $reduces$ by a factor ε .

Capacitance in the two cases:

$$C_1 = rac{Q}{V_1} = rac{\sigma S}{V_1} = rac{arepsilon_0 S}{a}$$

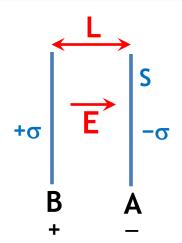
$$C_2=rac{Q}{V_2}=rac{\sigma S}{V_2}=rac{arepsilon_0 arepsilon S}{a}$$
 : increases by a factor $arepsilon$.

Energy density of the E-field (1)

Work required to move a charge $\delta q = S \delta \sigma$ from plane **A** to plane **B** in a parallel-plate capacitor filled with a dielectric material:

$$\delta W = EL \cdot \delta q = ELS \cdot \delta \sigma = VE \cdot \delta \sigma$$

(S: area; o: surface charge density; V: volume)



Inside the capacitor, $D=\sigma$, therefore $\delta D=\delta \sigma$

Finally, $\delta W = V E \cdot \delta D$

The increment in *energy density* [J/m
3
]: $\delta w = \frac{\delta W}{V} = E \delta D$

More generally (also for anisotropic dielectrics), $\delta w = ec{E} \delta ec{D}$

Energy density of the E-field (2)

In the assumption $\vec{D}=arepsilon_0 \vec{E}$ (i.e. for LIH dielectrics), the *energy density* is

$$w=\int\limits_0^D dw=\int\limits_0^D EdD=arepsilon_0arepsilon\int EdE=rac{1}{2}arepsilon_0arepsilon E^2=rac{1}{2}ED$$

of which $\frac{1}{2} \varepsilon_0 \ (\varepsilon - 1) \ E^2$ is due to polarisation of the dielectric.

The polarisation contribution often dominates (e.g. water: ε =81).

More generally (also for anisotropic dielectrics),
$$w=rac{1}{2}ec{E}ec{D}$$

In electrostatics, field energy can be interpreted as the potential energy of electric charges (assuming action at a distance).

Electrodynamic interpretation: *energy is localised in space*, and is carried by the electric field.

Summary

The electric displacement field is defined as

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

Gauss law for the electric displacement field:

$$egin{aligned} oldsymbol{
abla} ec{D} & oldsymbol{ec{D}} &
ho_{\mathbf{f}} \end{aligned} ext{ or equivalently } \int\limits_{S} ec{D} dec{S} = \int\limits_{V}
ho_{\mathbf{f}} dV$$

❖ For linear, isotropic and homogeneous (e.g. most) dielectrics,

$$ec{D} = (1 + \chi_E) \cdot arepsilon_0 ec{E} = arepsilon arepsilon_0 ec{E}$$
 (8>1)

Boundary conditions (no free surface charges):

$$D_{1n}=D_{2n}$$
 and $E_{1t}=E_{2t}$, leading to $\dfrac{ an heta_1}{ an heta_2}=\dfrac{arepsilon_1}{arepsilon_2}$

 \clubsuit Energy density of the electric field: $w=rac{1}{2}ec{E}ec{D}$