Electromagnetism 2 (spring semester 2025)

Lecture 12

Ferromagnetism; magnets

- Ferromagnetism; hysteresis
- Magnetic cores; electromagnets
- Permanent magnets

Previous lecture

ightharpoonup For dia- and paramagnetic materials, magnetic susceptibility χ_M and relative permeability μ are defined as

$$\vec{B} = \mu_0 (1 + \chi_M) \vec{H} = \mu_0 \mu \vec{H}$$

❖ Boundary conditions for the B and H fields:

$$B_{1n}=B_{2n}$$
 and $H_{1t}=H_{2t}$

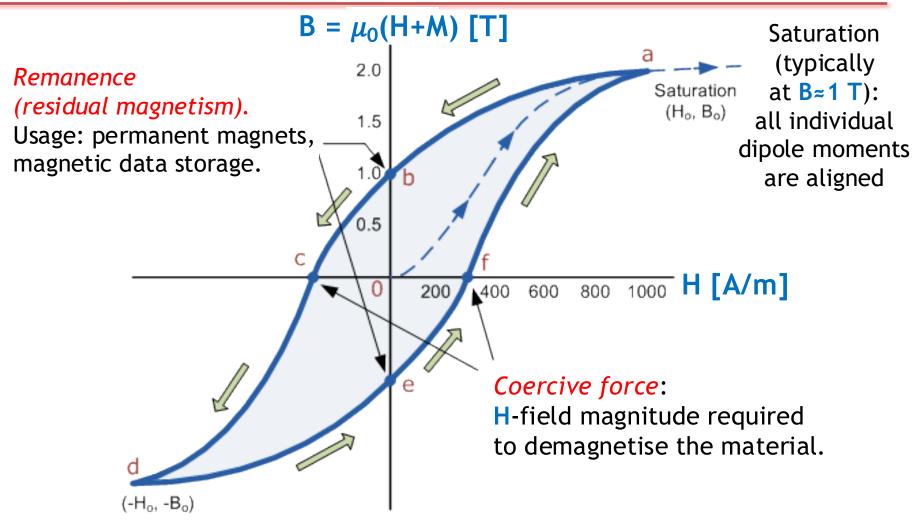
Energy density of the magnetic field in dia- and paramagnetics:

$$w = \frac{1}{2}BH$$

Ferromagnetism

- Ferromagnetism: the spins of conduction electrons in some metals align spontaneously due to the quantum-mechanical exchange interaction. This leads to the formation of domains.
- ❖ When domains are not oriented at random, this leads to a large magnetisation (also in the absence of external field).
- ❖ Spontaneous alignment breaks down above a critical temperature, the *Curie point* T_C (for iron, $T_C=1043$ K).
- * For T>T_C, the material is paramagnetic with $\chi_M = \frac{C}{T T_C}$ (the *Curie-Weiss law*).
- ❖ When all the spins are aligned, the magnetisation is saturated. (e.g. maximum B field for steel is about 1.5 T).
- ❖ Unlike dia- and paramagnetics, non-linear relation between B and H. Therefore, relative permeability $\mu = B/(\mu_0 H)$ is not well defined.

Hysteresis (or "B-H") curve



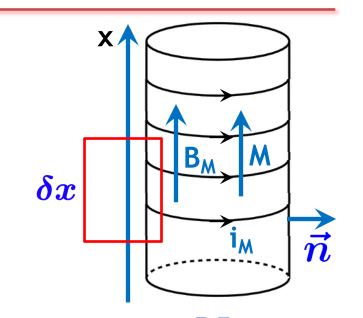
Indicative relative permeability can be very large: at the point (H=500 A/m, B=1 T), we obtain μ = B/(μ ₀H) = 1600.

Saturation field

Ampere's law for the magnetic field B due to magnetisation (red contour):

$$B\delta x = \mu_0 i_M \delta x = \mu_0 M \delta x$$

Saturation: all atomic dipole moments, each of the order of Bohr magneton $(\mu_B=9.27\times10^{-24} \text{ A·m})$, are aligned.



Saturation field:

$$B_{
m sat} = \mu_0 M pprox \mu_0 \mu_B n_{
m atoms} = \mu_0 \mu_B
ho rac{N_A}{\mathcal{M}}$$

n_{atoms}: density of atoms [m⁻³];

p: density of material [kg/m³];

 $N_A = 6 \times 10^{23}$: Avogadro constant;

. molar mass [kg/mol].

For iron ($\rho=7.9$ g/cm³, $\mathcal{M}=56$ g/mol), we estimate $B_{sat}\approx 1$ T. Saturation fields range from 0.2 T to 2 T.

Electromagnets (1)

magnetic core

Magnetic core: a piece ferromagnetic material ($\mu \gg 1$) designed to confine and guide magnetic fields.

Characteristic core length: L.

Gap width: h«L; N turns of wire; current I.

Ampere's law for the H field:
$$\oint_{L} \vec{H} d\vec{l} = \int_{S} \vec{j}_{f} d\vec{S}$$

Boundary condition $H_{t1}=H_{t2}$, i.e. $B_{out}=B_{in}/\mu \ll B_{in}$:

the B-field is contained in the magnetic core.

Boundary condition $B_{n1}=B_{n2}$: same B-field in the core and in the gap.

Assuming a fixed
$$\mu$$
 value, $\dfrac{BL}{\mu_0\mu}+\dfrac{Bh}{\mu_0}=NI$ Magnetic field in the absence For a small gap (h«L/ μ), $B=\dfrac{\mu_0NI}{L/\mu+h}\gg \dfrac{\mu_0NI}{L+h}$

The B-field is strongly enhanced by the presence of the core.

Electromagnets (2)

Let's account for hysteresis (not assumption of a fixed μ value).

Ampere's law:
$$HL+rac{Bh}{\mu_0}=NI$$

(H: field in the core; B: field both in the core and in the gap).

A straight line in the B-H plot: axis intercepts $H_0=NI/L$; $B_0=\mu_0NI/h$.

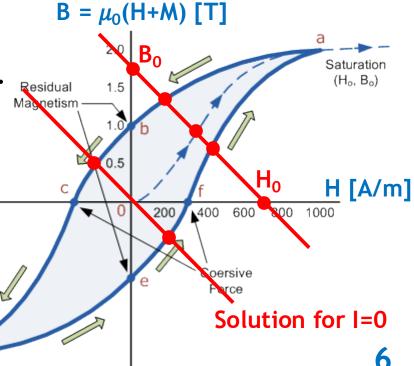
(-H_o, -B_o)

The line shifts when changing current.

Several solutions, depending on history.

If the core is first saturated, a considerable residual field at I=0.

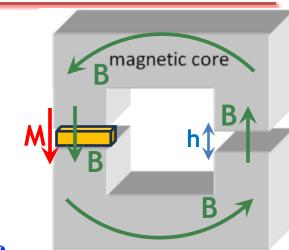
"Hard materials" with a wide hysteresis loop (e.g. alnico alloys) are used to make permanent magnets.



Magnetic cores: an example

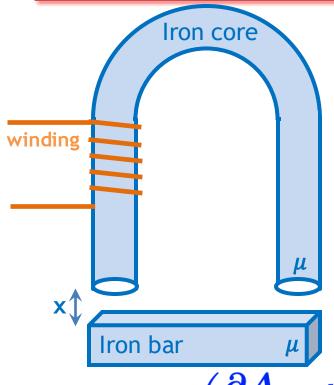
Magnetic core of characteristic length L, with two gaps (each of width h).

A piece of non-linear magnetised material with a magnetisation M is inserted into a gap.



Ampere's law for the H field:
$$\oint\limits_L ec{H} dec{l} = \int\limits_S ec{j_{
m f}} dec{S} = 0$$
 $rac{BL}{\mu_0\mu} + rac{Bh}{\mu_0} + \left(rac{B}{\mu_0} - M
ight)h = 0$ $B = rac{\mu_0 Mh}{L/\mu + 2h}$

Lifting electromagnets



For a process at B=const, i.e. Φ_B =const, i.e

Magnetic field energy:

$$W_m = rac{B^2}{2\mu_0\mu}V_{
m iron} + rac{B^2}{2\mu_0}Ax$$

A: total area of the two gaps.

Attractive force acting on the bar:

$$\left. \overline{F_x = \left(rac{\partial A_{
m mech}}{\partial x}
ight)}
ight|_{\Phi_B} = -\left. \left(rac{\partial W_m}{\partial x}
ight)
ight|_{\Phi_B} = -rac{B^2 A}{2\mu_0}$$

Lifting force per unit area:
$$f=rac{|F|}{A}=rac{B^2}{2\mu_0}=rac{w_m}{density in the gap}$$

Example: for B=1 T (typical saturation field),

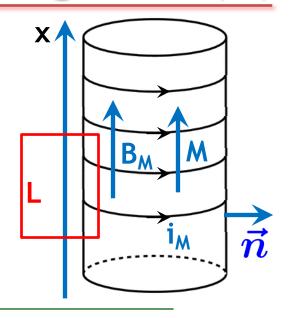
$$f = B^2/2\mu_0 = (1 / (2 \times 1.26 \times 10^{-6})) N/m^2 = 400 kN/m^2$$
.

Permanent magnets (1)

For an *infinitely long* magnetised cylinder, Ampere's law for the **B**-field inside (red contour):

$$egin{aligned} BL &= \mu_0 i_M L = \mu_0 ML \ ec{B} &= \mu_0 i_M = \mu_0 ec{M} \ ec{H} &= rac{1}{\mu_0} ec{B} - ec{M} = 0 \end{aligned}$$

Outside the cylinder, M=B=H=0.



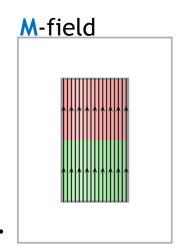
Consider a cylinder of a *finite length* L (such that $R \ll L$). Slightly lower B field, therefore, H is antiparallel to B and M.

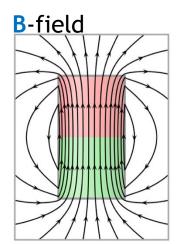
Outside the cylinder, M=0 (no medium), $H=B/\mu_0$.

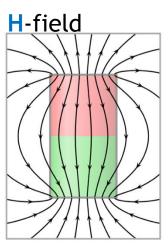
B field lines are continuous

due to $\nabla \vec{B} = 0$.

The H-field changes direction at the top & bottom surfaces.







Permanent magnets (2)

A uniformly magnetised cylindrical rod (length 2L, radius R«L).

B-field at the centre A of magnet (see previous page):

$$B_Approx \mu_0 i_M=\mu_0 M$$

More precisely,

$$B_A = \mu_0 M rac{\Omega_A}{4\pi} = \mu_0 M \cos heta pprox \mu_0 M \left(1 - rac{ heta^2}{2}
ight)$$
 $pprox \mu_0 M \left(1 - rac{R^2}{2L^2}
ight)$ [Ω_A is the solid angle subtended by the magnet surface, and $heta$ =arctan(R/L)]

At point B, by symmetry, $B_Bpprox B_A/2pprox \mu_0 M/2$

At point C, using the boundary condition for H_t ,

$$B_C=\mu_0H_C=\mu_0H_A=B_A-\mu_0M=-rac{R^2}{2L^2}\mu_0M$$

On the axis of symmetry at $z\gg L$, dipole field: $B(z)=\frac{\mu_0 MV}{2\pi z^3}$ (V= $\pi R^2 L$: volume of the magnet)

Summary

- * Ferromagnetics: non-linear relation of B and H fields; relative permeability $\mu = B/(\mu_0 H)$ is not well defined. In practice, often very large effective values (μ ~ 10³).
- Practical use: magnets.
 Examples considered: electromagnets, permanent magnets.