UNIVERSITY^{OF} BIRMINGHAM

Electromagnetism 2 (spring semester 2025)

Lecture 13

Electromagnetic waves in free space

- Wave equations in free space
- General solution to the wave equations
- Monochromatic plane wave solutions

Previously: Maxwell's equations

The laws of electrodynamics (in matter):

(M1)
$$\nabla \vec{D} = \rho$$

$$(M2) \quad \nabla \vec{B} = 0$$

(M3)
$$\nabla imes \vec{E} = -\frac{\partial B}{\partial t}$$

(M4)
$$\nabla imes \vec{H} = \vec{j} + \frac{\partial D}{\partial t}$$

Boundary conditions:

$$D_{1n} = D_{2n}$$

$$E_{1t}=E_{2t}$$

$$B_{1n} = B_{2n}$$

$$H_{1t} = H_{2t}$$

Ohm's law

For linear, isotropic and homogeneous materials, and weak fields varying slowly in time,

$$ec{D} = arepsilon_0 arepsilon ec{E}, \;\; ec{B} = \mu_0 \mu ec{H}, \;\; ec{m{j}} = m{\sigma} ec{m{E}}$$

Waves in free space (1)

Assume no free charges ($\rho=0$), no free currents (j=0), and $\epsilon=\mu=1$.

$$(M1) \ \, \nabla \vec{E} = 0 \qquad (M3) \ \, \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$(M2) \ \, \nabla \vec{B} = 0 \qquad (M4) \ \, \nabla \times \vec{B} = \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

Simplify the problem: assume $\vec{E} = \vec{E}(z,t); \quad \vec{B} = \vec{B}(z,t)$ Then for both E and B fields (denoted A below),

Then for both **E** and **B** fields (denoted **A** below),
$$\nabla \vec{A} = \frac{\partial A_z}{\partial z}; \ \nabla \times \vec{A} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ 0 & 0 & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = -\vec{e}_x \frac{\partial A_y}{\partial z} + \vec{e}_y \frac{\partial A_x}{\partial z}$$
 (no **z** component!)

Therefore (M1)–(M4) for the z-components of the fields become:

$$\frac{\partial E_z}{\partial z} = \frac{\partial B_z}{\partial z} = \frac{\partial E_z}{\partial t} = \frac{\partial B_z}{\partial t} = 0$$
 Uniform static E_z and B_z fields, not of any interest 2

Waves in free space (2)

y-component of (M3):
$$\frac{\partial E_x}{\partial z} = -\frac{\partial B_y}{\partial t}$$
 (1)
x-component of (M4):
$$-\frac{\partial B_y}{\partial z} = \varepsilon_0 \mu_0 \frac{\partial E_x}{\partial t}$$
 (2)
x-component of (M3):
$$-\frac{\partial E_y}{\partial z} = -\frac{\partial B_x}{\partial t}$$
 (3)
y-component of (M4):
$$\frac{\partial B_x}{\partial z} = \varepsilon_0 \mu_0 \frac{\partial E_y}{\partial t}$$
 (4)

Two independent pairs of equations: for (E_x, B_y) and for (E_y, B_x) .

Exclude
$$B_y$$
 from (1) and (2): $-\frac{\partial^2 B_y}{\partial z \partial t} = \boxed{\frac{\partial^2 E_x}{\partial z^2} = \varepsilon_0 \mu_0 \frac{\partial^2 E_x}{\partial t^2}}$

This is the wave equation. It is also valid for E_y , B_x , and B_y .

Wave equations: discussion

- ❖ The displacement current term in (M4), introduced by Maxwell, is essential for the propagation of waves.
- ❖ An accelerating electric charge is sufficient to generate an EM wave, which then propagates in space.
- ❖ Principle of superposition: a linear combination of two solutions $\{E_1(x,y,z,t), B_1(x,y,z,t)\}$ and $\{E_2(x,y,z,t), B_2(x,y,z,t)\}$ is also a solution to Maxwell's equations.
- Maxwell's equations are valid in any inertial reference frame. Therefore, EM waves propagate in free space at a fixed speed c, in any inertial reference frame (which is also postulated by special relativity).

Solutions to the wave equation

Let's introduce a quantity $c=1/\sqrt{\varepsilon_0\mu_0}$ [m/s]

The one-dimensional wave equation becomes $\frac{\partial L_x}{\partial x^2} =$

General (d'Alembert) solution: $E_x(z,t) = f_1(z-ct) + f_2(z+ct)$

Here $f_1(x)$ and $f_2(x)$ are smooth functions (see the Maths 2B module)

- ❖ Interpretation: an electromagnetic wave of a fixed smooth shape moving in the direction of z (for f₁) or -z (for f₂).
- ❖ These waves are of transverse nature
 (E and B are perpendicular to the direction of propagation, z).
- ❖ They propagate (in free space) at a *finite speed* of $c \approx 3 \times 10^8$ m/s.
- ❖ This speed agrees with the measured speed of light in vacuum. This led Maxwell to the hypothesis that light is electromagnetic in nature (1865).
- ❖ First experimental observation of EM waves: Hertz (1886).

The three-dimensional case

Assume no free charges ($\rho=0$), no free currents (j=0), and $\epsilon=\mu=1$.

(M1)
$$abla ec{E} = 0$$
 (M3) $abla imes ec{E} = -rac{\partial ec{B}}{\partial t}$ (M2) $abla ec{B} = 0$ (M4) $abla imes ec{B} = arepsilon_0 \mu_0 rac{\partial ec{E}}{\partial t}$

To derive the equations for B and E fields separately, take curl of (M4)

$$abla imes (
abla imes ec{B}) = arepsilon_0 \mu_0
abla imes rac{\partial ec{E}}{\partial t} = arepsilon_0 \mu_0 rac{\partial}{\partial t} \left(
abla imes ec{E}
ight) = -arepsilon_0 \mu_0 rac{\partial^2 ec{B}}{\partial t^2}$$

On the other hand, $\nabla imes (\nabla imes \vec{B}) = \nabla (\nabla \vec{B}) - \nabla^2 \vec{B} = -\nabla^2 \vec{B}$

See lecture 2

Therefore, $\nabla^2 \vec{B} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2}$ and similarly $\nabla^2 \vec{E} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2}$

Monochromatic plane waves

Plane wave solutions (propagating in z direction, without loss of generality):

$$ec{E}(z,t) = ec{E}_0 \cos(\omega t - kz) \qquad ec{ar{E}_0 \perp ar{e}_z}$$

Using complex notation, implying the real part of the expression:

$$\vec{E}(z,t) = \vec{E}_0 e^{i(\omega t - kz)}$$
 (can be used for linear operations)

$$rac{\partial^2 ec{E}}{\partial z^2} = -k^2 ec{E} \qquad rac{\partial^2 ec{E}}{\partial t^2} = -\omega^2 ec{E} \qquad rac{\partial^2 ec{E}}{\partial z^2} = \left(rac{k}{\omega}
ight)^2 rac{\partial^2 ec{E}}{\partial t^2}$$

A solution to the wave equation in case $|c=\omega/k|$

This is an important special case:

- * waves far from the source of radiation are almost *plane waves*;
- * a wave packet can be decomposed into monochromatic waves.

$$|ec{m{E}}_0|$$
 : amplitude of the electric field [V/m]

$$\omega = \frac{2\pi}{T}$$
: angular frequency [Hz = s⁻¹]; T is the period of oscillation. Time-to-phase conversion.

$$k = \frac{2\pi}{\lambda}$$
: wave number [m⁻¹], i.e. the "spatial frequency"; λ is the wavelength. Coordinate-to-phase conversion.

Wave vector and wave fronts

Monochromatic plane wave propagating in an arbitrary direction:

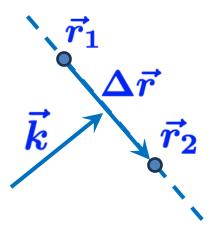
$$ec{E}(ec{r},t)=ec{E}_0e^{i(\omega t-ec{k}ec{r})}$$

Here k is the wave vector: it points in the direction of propagation, and its magnitude is equal to the wave number, $k = \omega/c$.

Wave front: a set of points where the wave has the same phase, $(\phi=\omega t-kr)$ at any fixed moment of time.

Wave front equation: $\vec{k}\vec{r} = \text{const}$

This condition defines a plane perpendicular to $oldsymbol{k}$.



Proof: for any two points (r_1,r_2) on a wave front,

$$ec{k} \cdot ec{r}_1 = ec{k} \cdot ec{r}_2$$

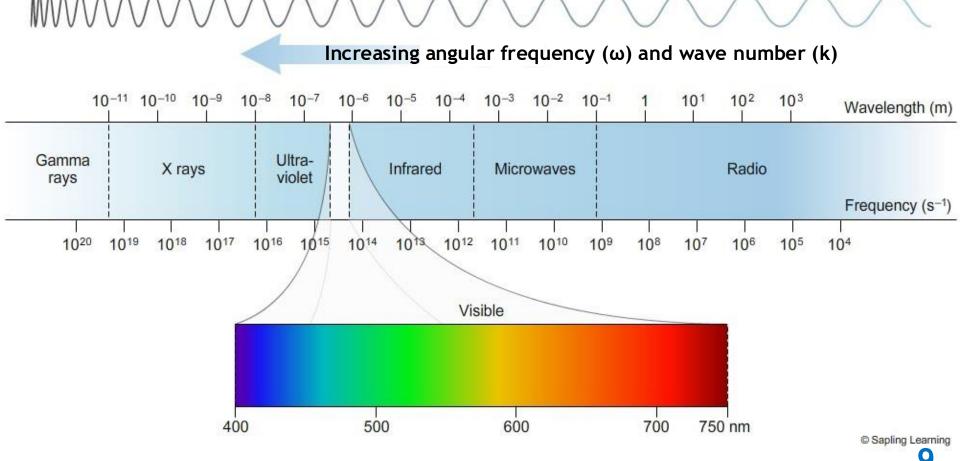
Therefore, $\vec{k} \cdot (\vec{r}_2 - \vec{r}_1) = \vec{k} \cdot \Delta \vec{r} = 0$

This means $\vec{k} \perp \Delta \vec{r}$

The EM spectrum

No restrictions on the angular frequency $\omega = kc$: the *electromagnetic spectrum*

Increasing wavelength (λ) & oscillation period (T)



Summary

* Wave equations following from Maxwell's equations in free space:

$$abla^2 ec{E} = rac{1}{c^2} rac{\partial^2 ec{E}}{\partial t^2} \qquad
abla^2 ec{B} = rac{1}{c^2} rac{\partial^2 ec{B}}{\partial t^2}$$

Solutions: EM waves of transverse nature propagating with a finite speed, namely the speed of light

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$

❖ Monochromatic plane wave solutions:

$$\vec{E}(\vec{r},t) = \vec{E}_0 e^{i(\omega t - \vec{k}\vec{r})}$$

with a wave number
$$k=\dfrac{\omega}{c}$$
 , and a wavelength $\lambda=\dfrac{2\pi}{k}$.