UNIVERSITY OF BIRMINGHAM

Electromagnetism 2 (spring semester 2025)

Lecture 20

Low-frequency EM waves in good conductors

- Wave attenuation in good conductors
- Wave impedance in good conductors
- Reflection at vacuum/good conductor boundary
- Skin effect

Previous lecture

- riangle Ohm's law: $ec{m{j}} = \sigma ec{m{E}}$
- ❖ Static conductivity, applies to the low-frequency regime ($\omega \ll \gamma = 1/\tau_c$):

$$\sigma = rac{n_e e^2}{m_e} au_c$$

Complex wave number in conductors, leading to attenuation of EM waves:

$$k^2=rac{\omega^2}{c^2}-i\mu_0\omega\sigma$$

Ratio of displacement/conduction terms:

$$Q=rac{\omega^2/c^2}{\mu_0\omega\sigma}=rac{\omegaarepsilon_0}{\sigma}$$

❖ Complex wave number in good conductors (Q≪1):

$$k=rac{1-i}{\sqrt{2}}\sqrt{\mu_0\sigma\omega}$$

❖ For copper, the good conductor condition $Q\ll 1$ is satisfied in the low-frequency regime ($\omega\ll 1/\tau_c$: radiowaves, microwaves).

Wave attenuation

Plane wave in a good conductor $(k=k_r-ik_i)$, in the z direction:

$$E_x = E_0 e^{i(\omega t - kz)} = E_0 e^{i(\omega t - k_r z)} e^{-k_i z}$$

Skin depth: distance corresponding to amplitude attenuation by a factor of e

$$\delta = rac{1}{k_i} = \sqrt{rac{2}{\mu_0 \sigma \omega}}$$

For copper (σ =6×10⁷ Ω ⁻¹m⁻¹; recall that μ_0 = 4 π ×10⁻⁷ H/m), δ =10 mm at ν =50 Hz; and δ =10 μ m at ν =50 MHz.

No waves in ideal conductors: $\sigma \rightarrow \infty$, $k_i \rightarrow \infty$, $\delta \rightarrow 0$, $\vec{E} = \vec{0}$.

Ratio of skin depth to wavelength in free space $(\lambda_0 = 2\pi/k_0 = 2\pi c/\omega)$:

$$\frac{\delta}{\lambda} = \sqrt{\frac{2}{\mu_0\sigma\omega}} \cdot \frac{\omega}{2\pi c} = \sqrt{\frac{2\omega}{\mu_0\sigma}} \frac{\sqrt{\varepsilon_0\mu_0}}{2\pi} = \frac{1}{\sqrt{2}\pi} \sqrt{\frac{\omega\varepsilon_0}{\sigma}} = \frac{\sqrt{Q}}{\sqrt{2}\pi} \ll 1$$

Radiowaves and microwaves are rapidly attenuated in good conductors: RF shielding of sensitive equipment.

Wave impedance

Eq. (M3) for
$$arepsilon=\mu=1$$
: $abla imesec E=-rac{\partialec B}{\partial t}=-\mu_0rac{\partialec H}{\partial t}$

Using the shortcuts (lecture 14), $-iec{k} imesec{E}=-i\omega\mu_0ec{H}$

For a good conductor, $k=e^{-i\pi/4}\sqrt{\mu_0\sigma\omega}$ (lecture 19)

Therefore, the wave impedance is

$$Z = rac{E}{H} = rac{\mu_0 \omega}{k} = \mu_0 \omega \cdot e^{i\pi/4} rac{1}{\sqrt{\mu_0 \sigma \omega}} = e^{i\pi/4} \sqrt{rac{\mu_0 \omega}{\sigma}}$$

Comparing to the expression for the skin depth, $\,\delta = \sqrt{rac{2}{\mu_0\sigma\omega}}\,,\,$

we obtain
$$\ Z = rac{1+i}{\sqrt{2}} \cdot rac{1}{\sigma} \sqrt{\mu_0 \sigma \omega} = rac{1+i}{\sigma \delta}$$

Magnetic field lags in phase by 45 degrees wrt electric field.

EM field energy

Example: copper ($\sigma = 6 \times 10^7 \ \Omega^{-1} \text{m}^{-1}$; $\mu_0 = 4\pi \times 10^{-7} \ \text{H/m}$) at $\nu = 10 \ \text{GHz}$,

$$Z=rac{i+1}{\sqrt{2}}\sqrt{rac{\mu_0\omega}{\sigma}}=0.026\cdot(i+1)\;\Omega$$

Ratio of electric and magnetic field amplitudes:

$$|Z| = \left|rac{E_0}{H_0}
ight| = \sqrt{rac{\mu_0\omega}{\sigma}} = rac{\mu_0}{\sqrt{arepsilon_0\mu_0}}\sqrt{rac{\omegaarepsilon_0}{\sigma}} = \mu_0 c\sqrt{Q} \ll \mu_0 c$$

Recall that the impedance of free space is $Z_0 = E/H = \mu_0 c = 377 \Omega$, and the electric/magnetic energy ratio in free space is

$$\left(\frac{1}{2}\varepsilon_0E^2\right)/\left(\frac{1}{2\mu_0}B^2\right)=\varepsilon_0\mu_0\cdot\frac{E^2}{B^2}=\varepsilon_0\mu_0c^2=1$$
 (lecture 14)

EM field energy in a good conductor is almost entirely magnetic. Large conductivity σ leads to small ${\sf E}$ due to $\vec{j}=\sigma\vec{E}$.

Refractive index

Refractive index definition via the phase velocity of the wave:

$$oldsymbol{v} = rac{\omega}{k} = rac{c}{n}$$
 , therefore $oldsymbol{n} = rac{kc}{\omega}$

Complex wave number is equivalent to complex refractive index. Similarly to dielectrics (lecture 18), this leads to wave attenuation.

Refractive index of good conductors ($\omega \ll \sigma/\epsilon_0$) in the low-frequency regime ($\omega \ll \gamma = 1/\tau_c$):

Recall that
$$c=1/\sqrt{arepsilon_0 \mu_0}$$

$$n = rac{c}{\omega} \cdot rac{1-i}{\sqrt{2}} \sqrt{\mu_0 \sigma \omega} = rac{1-i}{\sqrt{2}} \cdot \sqrt{rac{\sigma}{arepsilon_0 \omega}} = rac{1-i}{\sqrt{2Q}}$$

As for the wave number, equal real and imaginary parts:

$$oldsymbol{n} = oldsymbol{n_r} - oldsymbol{in_i}$$
 , with $oldsymbol{n_r} = oldsymbol{n_i} = 1/\sqrt{2Q}$

Considering that $Q\ll 1$, we conclude that $n_r\gg 1$, $n_i\gg 1$.

Reflection at conductor surface

Reflectance at a boundary, normal incidence (lecture 17):

$$R=\left(rac{n_1-n_2}{n_1+n_2}
ight)^2$$

This expression can be applied to conductors (with complex n values). For a vacuum/good conductor boundary,

$$R=\left|rac{n-1}{n+1}
ight|^2=\left|rac{rac{1-i}{\sqrt{2Q}}-1}{rac{1-i}{\sqrt{2Q}}+1}
ight|^2$$

Let's denote $x = n_r = 1/\sqrt{2Q} \gg 1$.

Keeping only the leading term in 1/x,

$$R = \left| \frac{(1-i)x - 1}{(1-i)x + 1} \right|^2 = \frac{|-1 + x - ix|^2}{|1 + x - ix|^2} = \frac{(x-1)^2 + x^2}{(x+1)^2 + x^2}$$
$$\approx \frac{2x^2 - 2x}{2x^2 + 2x} = \frac{x - 1}{x + 1} = \frac{1 - 1/x}{1 + 1/x} \approx \left(1 - \frac{1}{x}\right)^2 \approx 1 - \frac{2}{x}$$

Reflection at conductor surface

Reflectance at normal incidence: $R = 1 - 2/n_r = 1 - 2\sqrt{2Q}$

Transmittance:
$$T=1-R=2\sqrt{2Q}=2\sqrt{rac{2\omegaarepsilon_0}{\sigma}}\ll 1$$

Metals: near-perfect reflection of radiowaves and microwaves, $(\lambda > 1 \text{ mm})$, thanks to the large values of n_r and n_i .

Example: copper at a microwave frequency $\omega = 10^{10} \text{ s}^{-1}$,

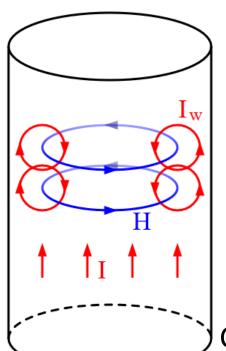
$$T = 2\sqrt{\frac{2 \cdot 8.9 \times 10^{-12} \text{ F/m} \cdot 10^{10} \text{ Hz}}{6 \times 10^7 \Omega^{-1} \text{m}^{-1}}} \approx 10^{-4}$$

The transmitted wave is dissipated as Joule heating.

Optical frequencies do not satisfy the condition $\omega \ll 1/\tau_c \sim 10^{13} \text{ s}^{-1}$. The classical theory is unable to describe reflection at optical frequencies ($\omega \sim 10^{15} \text{ s}^{-1}$); atomic transitions ($E \sim 1 \text{ eV}$) take place. 7

Skin effect

Alternating current in a good conductor, $Q=\frac{\omega\varepsilon_0}{\sigma}\ll 1$ The E field penetrates a distance δ into the surface, $\delta=\sqrt{\frac{2}{\mu_0\sigma\omega}}$ Eddy currents arising from changing B field cancel the current in the centre of conductor and reinforce it in the skin.



Resistance of a cylindrical wire (length L, radius r):

at low frequency,
$$oldsymbol{R_0} = rac{1}{\sigma} \cdot rac{L}{\pi r^2}$$
 ;

at higher frequency ω (such that $\delta \ll r$), the current is carried in a thin skin layer of a typical width δ ;

$$Rpprox rac{1}{\sigma}\cdotrac{L}{2\pi r\delta}=R_0\cdotrac{r}{2\delta}\gg R_0$$

Copper wire, r=1 mm, $v=\omega/2\pi=50$ MHz: $R/R_0=r/(2\delta)=50$.

For high-frequency currents in general, $R \sim \frac{1}{\sigma \delta} \sim \sqrt{\frac{\omega}{\sigma}}$

Summary

Rapid attenuation of waves in good conductors, characterised by the skin depth:

$$\delta = \sqrt{rac{2}{\mu_0\sigma\omega}}$$

* Refractive index and wave impedance in good conductors:

$$Z=rac{E}{H}=rac{1+i}{\sigma\delta} \qquad |Z|\ll \mu_0 c \qquad n=rac{1-i}{\sqrt{2Q}}$$

- ✓ Magnetic field lags in phase by 45 degrees.
- √ Field energy is almost entirely magnetic.
- ✓ Large real and imaginary parts of refractive index.
- ❖ Good conductors reflect low-frequency EM waves very well.

Transmittance (normal incidence): $T=2\sqrt{2Q}\ll 1$

 $lap{.}$ Skin effect in good conductors: wire resistance for high-frequency currents $R \sim rac{1}{\sigma \delta} \sim \sqrt{rac{\omega}{\sigma}}$