UNIVERSITY^{OF} BIRMINGHAM

Electromagnetism 2 (spring semester 2025)

Lecture 21 EM waves in plasma

- Plasma oscillations, plasma frequency
- Refractive index of plasma
- Dispersion relation in plasma
- Properties of EM waves in plasma

Previous lecture

Rapid attenuation of waves in good conductors, characterised by the skin depth:

$$\delta = \sqrt{rac{2}{\mu_0\sigma\omega}}$$

Refractive index and wave impedance in good conductors:

$$Z = rac{E}{H} = rac{1+i}{\sigma\delta}$$
 $|Z| \ll \mu_0 c$ $n = rac{1-i}{\sqrt{2Q}}$

- ✓ Magnetic field lags in phase by 45 degrees.
- ✓ Field energy is almost entirely magnetic.
- ✓ Large real and imaginary parts of refractive index.
- ❖ Good conductors reflect low-frequency EM waves very well.

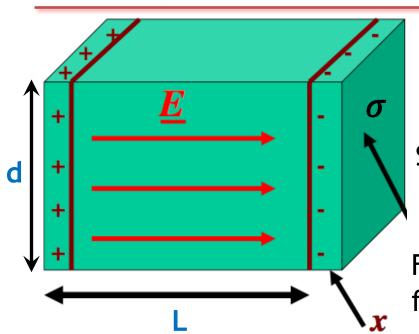
Transmittance (normal incidence): $T=2\sqrt{2Q}\ll 1$

* Skin effect in good conductors: wire resistance for high-frequency currents $R \sim \frac{1}{\sigma \delta} \sim \sqrt{\frac{\omega}{\sigma}}$

Plasma: fully or partially ionised but electrically neutral gas of unbound positive and negative particles.

- Density of unbound charged particles must be sufficiently high: this leads to collective effects.
- The universe largely consists of plasma: stars, nebulae, interstellar and intergalactic media, ...
- On Earth: magnetosphere, ionosphere, lightning.
- Practical applications: the tokamak.

Plasma oscillations



Consider all electrons displaced by a distance **x**«**L** from their equilibrium positions wrt the positive ions.

Surface charge density for displacement x:

$$\sigma = \pm n_e ex$$

For d>>L, uniform electric field (by Gauss law):

$$E=rac{n_e e x}{arepsilon_0}$$

Equation of motion of each electron: $m\ddot{x}(t) = -\frac{nec}{\varepsilon_0}x(t)$ (a harmonic oscillator)

A steady solution:
$$m{x(t)} = m{x_0}e^{m{i}m{\omega_P}t}$$
 , with $m{\omega_P} = \sqrt{rac{n_ee^2}{m_earepsilon_0}}$

The plasma frequency ω_P : the resonant frequency of collective oscillations of electrons about their equilibrium positions. Oscillations of the (heavy) ions can often be neglected.

The Debye length

(not discussed in the lecture)

Potential energy of each electron, displaced by distance x:

$$U(x) = \int\limits_0^x eE(x')dx' = rac{1}{2} \cdot \left(rac{n_e e^2}{arepsilon_0}
ight) x^2$$

Maximum displacement x possible: all $kT \approx \frac{1}{2} \cdot \left(\frac{n_e e^2}{\epsilon_0}\right) x^2$ thermal energy becomes potential energy,

$$kT pprox rac{1}{2} \cdot \left(rac{n_e e^2}{arepsilon_0}
ight) x^2$$

Displacement satisfying this condition is called the Debye length or Debye radius:

$$\lambda_D pprox \sqrt{rac{arepsilon_0 kT}{n_e e^2}}$$

It quantifies the screening of electric changes in plasma. Numerically, it ranges from $\lambda_D \sim 0.1$ mm in a tokamak to $\lambda_{\rm D}$ ~100 km in intergalactic medium.

Quantitative definition of ideal plasma: $n_e \lambda_D^3 \gg 1$ i.e. many electrons in a Debye sphere (leading to collective effects).

Free electrons in plasma

collisions with lattice.

Consider an oscillating electric field, $ec{E}=ec{e}_x E_0 e^{i\omega t}$

Reminder: equation of motion of a free electron in conductor is

$$m\ddot{x} = -qE_0e^{i\omega t} - m\gamma\dot{x}$$
 (lecture 19)

Electric force. Dissipative (damping) term: collisions with lattice

Plasma has much smaller density than conductors.

The damping constant γ (mean frequency of collisions) is negligible. Therefore, motion of free electrons in plasma:

$$m\ddot{x} = -qE_0e^{i\omega t}$$

This equation also applies to conductors in the high-frequency regime not considered so far $(\omega \gg \gamma = 1/\tau_c)$, often valid for X-rays).

Steady solution: harmonic oscillation *in phase* with the E-field,

$$x(t)=rac{q}{m\omega^2}E_0e^{i\omega t}=rac{q}{m\omega^2}E(t)$$

Wave propagation in plasma

Polarisation: induced dipole moment per unit of volume (lecture 7)

$$P(t) = -n_e ex(t) = -rac{n_e e^2}{m\omega^2} \cdot E(t)$$

(note the minus sign, unlike dielectrics in static regime)

The relative permittivity (lecture 8) is real:

$$arepsilon = 1 + \chi_E = 1 + rac{P}{arepsilon_0 E} = 1 - rac{n_e e^2}{arepsilon_0 m \omega^2} = 1 - rac{\omega_P^2}{\omega^2} < 1$$

Refractive index (lecture 14): $n=\sqrt{\varepsilon}=\sqrt{1-\omega_P^2/\omega^2}$

For $\omega > \omega_P$: real refractive index, $n(\omega) < 1$, plasma is transparent. For the same reason, metals are transparent to X-rays.

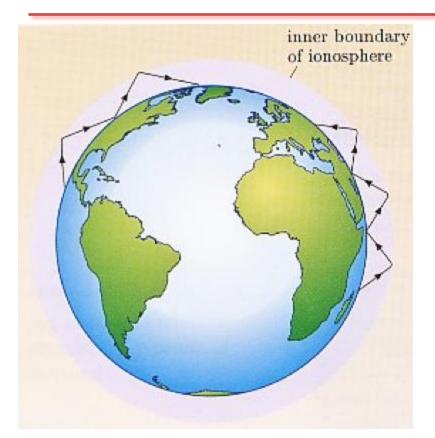
For $\omega < \omega_P$: imaginary refractive index, $n = i \sqrt{\omega_P^2/\omega^2 - 1} = i n_i$, EM waves do not propagate (evanescent fields).

Reflectance at vacuum/plasma boundary for $\omega < \omega_P$:

R=1 for any angle of incidence (Fresnel equations, lecture 17).

Example: normal incidence,
$$R = \left| \frac{1-n}{1+n} \right|^2 = \frac{1+n_i^2}{1+n_i^2} = 1$$

Radio communication



Radiowaves are reflected by the *ionosphere* (upper layer of the atmosphere; ~100 km above surface; plasma with electron density $n_e \sim 10^{12} m^{-3}$), and by ground or water (which are good conductors).

This enables long-range radio communication.

1901: Marconi demonstrated transmission of 1 MHz radiowaves across the Atlantic. No explanation was given why this was possible.

1902: Kennelly and Heaviside suggested the existence of a conducting layer in the upper atmosphere.

1924: Appleton confirmed the existence of the ionosphere experimentally (Nobel Prize 1947).

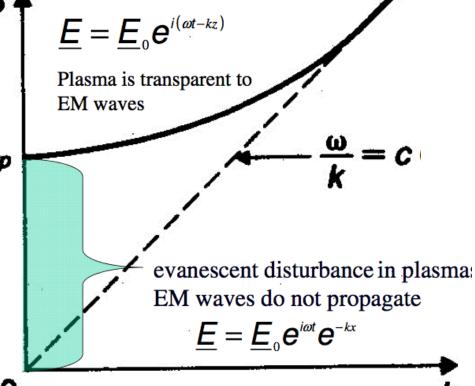
Dispersion relation for plasma

Dispersion relation, i.e. the relation between the wave number k and the wave frequency ω :

$$k^2 = \left(rac{\omega}{v}
ight)^2 = \left(rac{\omega n}{c}
ight)^2 = rac{\omega^2}{c^2}\left(1 - rac{\omega_P^2}{\omega^2}
ight) = rac{\omega^2}{c^2} - rac{\omega_P^2}{c^2}$$

$$\omega(k) = \sqrt{\omega_P^2 + k^2 c^2}$$
 $E = E_0 e^{i(\omega t - kz)}$

- ❖ For $\omega > \omega_P$, the wave number k ω_P is real; plasma is transparent for EM waves.
- * For $\omega < \omega_P$, k is purely imaginary; EM waves do not propagate; (evanescent fields).



Speed of EM waves in plasma

Phase velocity of EM waves $(\omega > \omega_P)$:

$$v_{
m p}=rac{\omega}{k}=rac{c}{n}=rac{c}{\sqrt{1-(\omega_P/\omega)^2}}>c$$

Note that $v_{
m p}
ightarrow \infty$ for $\omega
ightarrow \omega_{P}$.

This is the speed of a point with a fixed phase. Signal transmission requires wave modulation.

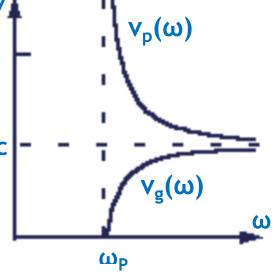
A wave packet travels with the group velocity:

$$v_{
m g}=rac{d\omega}{dk}$$

Differentiating the dispersion relation, we find

$$2kdk = rac{2\omega d\omega}{c^2}$$
; $rac{w}{k} \cdot rac{dw}{dk} = v_{
m p}v_{
m g} = c^2$

Finally,
$$v_{
m g}=rac{d\omega}{dk}=rac{c^2}{v_{
m p}}=c\sqrt{1-(\omega_P/\omega)^2}< c$$



Properties of waves in plasma (1)

A plane wave propagating in the **z** direction:

$$E_x = E_0 e^{i(\omega t - kz)}$$

 $H_y = H_0 e^{i(\omega t - kz)}$

Impedance of free space

Eq. (M3) for
$$arepsilon=\mu=1$$
: $abla imesec E=-rac{\partialec B}{\partial t}=-\mu_0rac{\partialec H}{\partial t}$

Using the shortcuts (lecture 14), $-iec{k} imesec{E}=-i\omega\mu_0ec{H}$

Therefore

$$H_y = rac{k}{\mu_0 \omega} E_x = rac{1}{\mu_0 \omega} \sqrt{rac{\omega^2}{c^2} - rac{\omega_P^2}{c^2}} E_x = rac{1}{\mu_0 c} \sqrt{1 - rac{\omega_P^2}{\omega^2}} E_x$$

Wave impedance:

$$Z=rac{E}{H}=rac{\mu_0 c}{\sqrt{1-(\omega_P/\omega)^2}}=rac{Z_0}{\sqrt{1-(\omega_P/\omega)^2}}$$

10

Properties of waves in plasma (2)

$$k^2 = \frac{\omega^2}{c^2} - \frac{\omega_P^2}{c^2}$$
 $H_y = \frac{1}{\mu_0 c} \sqrt{1 - \frac{\omega_P^2}{\omega^2}} E_x$

- ❖ High frequencies ($\omega > \omega_P$): E and H fields are in phase; impedance Z=E/H and wave number k are real; no attenuation. For $\omega \gg \omega_P$, the wave in not affected by the presence of plasma: Z→Z₀, free electrons do not respond to the oscillating E-field.
- ❖ For $\omega \to \omega_P$, we see that $H \to 0$ and $k \to 0$. Free electrons oscillate. However, no wave propagation and no transport of energy. Poynting vector: N=EH→0.
- * Low frequencies ($\omega < \omega_P$): impedance Z=E/H is purely imaginary, i.e. E and H are out of phase by 90 degrees. The wave number k is purely imaginary: evanescent field.
- Physics of EM waves in plasma becomes much more complex In the presence of external magnetic fields.

Summary

- ightharpoonup Plasma oscillations with a frequency of $\omega_P = \sqrt{\frac{n_e e^2}{m_e \varepsilon_0}}$ is an example of a collective phenomenon.
- lacktriangledown Refractive index of plasma: $n=\sqrt{arepsilon}=\sqrt{1-\omega_P^2/\omega^2}$.
- ❖ Dispersion relation in plasma: $k^2 = \frac{\omega^2}{c^2} \frac{\omega_P^2}{c^2}$.
- ightharpoonup Frequencies below ω_P : waves are attenuated in plasma, and fully reflected at vacuum/plasma boundary at normal incidence.
- Frequencies above ω_P : waves propagate in plasma without attenuation, with a phase velocity $v_p > c$.
- These considerations also apply to conductors in the high-frequency regime.