UNIVERSITY^{OF} BIRMINGHAM

Electromagnetism 2 (spring semester 2025)

Lecture A1 (non-examinable)

Motion of charges in uniform fields

- * Motion in uniform electric and magnetic fields
- Cyclotron frequency and radius
- Principles of mass spectrometry
- Thomson's parabola spectrometer
- Electrostatic lenses (non-uniform field)

Motion in uniform E or B field

The Lorentz force (valid also in the relativistic case):

$$ec{F} = q(ec{E} + ec{v} imes ec{B})$$

Uniform static electric field: $ec{F}=qec{E}=\mathrm{const}$ (parabolic trajectory) Uniform static magnetic field:

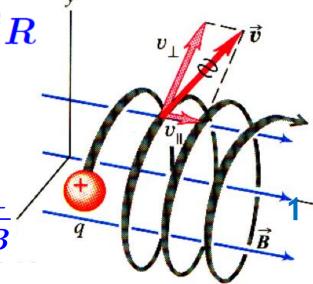
$$ec{F} = q(ec{v}_{\parallel} + ec{v}_{\perp}) imes ec{B} = qec{v}_{\perp} imes ec{B}$$

- (1) Motion along the B-field: F=0, therefore uniform motion.
- (2) In the plane perpendicular to B-field, $F \perp v$, circular motion with angular frequency o.

Equation of motion:
$$F=qv_{\perp}B=m\omega^2R$$
 $q\omega RB=m\omega^2R$ In the vector form, $\vec{\omega}=-rac{q\vec{B}}{m}$

Radius of curvature:
$$R=rac{v_{\perp}}{\omega}=rac{mv_{\perp}}{qB}=rac{p_{\perp}}{qB}$$

(1)+(2) constitute helical motion.



Uniform E and B fields (E⊥B)

Assume $E \ll cB$ (otherwise B-field can be neglected for $v\ll c$).

Consider the non-trivial case
$$ec{E} \perp ec{B}$$
 , $m rac{d ec{v}}{dt} = q (ec{E} + ec{v} imes ec{B})$

If \mathbf{v}' is the velocity in a ref.frame moving with a velocity \vec{v}_d , then

$$m rac{d ec{v}'}{dt} = q(ec{E} + ec{v}' imes ec{B} + ec{v}_d imes ec{B})$$

Let's choose \vec{v}_d so that:

- 1) $\vec{E} + \vec{v}_d \times \vec{B} = 0$ (which is possible because $\vec{E} \perp \vec{B}$);
- 2) $\vec{v}_d \perp \vec{B}$ (which we are free to choose).

Then
$$\vec{v}_d=rac{ec{E} imes ec{B}}{B^2}\ll c$$
 (a non-assessed problem: check this!) Equation of motion in this reference frame: $mrac{dec{v}'}{dt}=qec{v}' imes ec{B}$

The effect of E-field is compensated by the choice of $ec{v}_d$.

Therefore, helical motion in this reference frame.

Uniform E and B fields (general case)

Static uniform E and B fields (general non-relativistic case).

Consider the components of the E-field parallel and perpendicular to the B-field: $\vec E=\vec E_{\parallel}+\vec E_{\perp}$ Superposition of three motions.

(1) Motion with a constant acceleration along the B-field

$$a_{\parallel}=(q/m)E_{\parallel}$$

(2) Uniform rotation about the B-field direction with a fixed angular frequency \vec{B}

$$ec{\omega} = -rac{qB}{m}$$

(3) Electric drift with a velocity $\ ec{v}_d=rac{ec{E}_\perp imes ec{B}}{B^2}=rac{ec{E} imes ec{B}}{B^2}$,

independent of the mass and charge of the particle.

The components (1)+(2): helical motion with a variable pitch.

Cyclotron frequency and radius

A relativistic charged particle in a uniform magnetic field.

Consider velocity perpendicular to the B-field. Equation of motion:

$$ec{F} = rac{dec{p}}{dt} = rac{d}{dt}(\gamma m ec{v}) = m\gamma rac{dec{v}}{dt} + mec{v} rac{d\gamma}{dt} = m\gamma rac{dec{v}}{dt}$$

Therefore $q \vec{v} \times \vec{B} = m \gamma \frac{d \vec{v}}{dt}$ no work is done on the charge by the magnetic field

Difference to the non-relativistic case: the Lorentz factor γ .

Therefore the angular frequency of rotation: the cyclotron frequency (cf. Larmor frequency, lecture 9)

$$\omega_c = rac{qB}{\gamma m}$$

Radius of curvature: the cyclotron radius

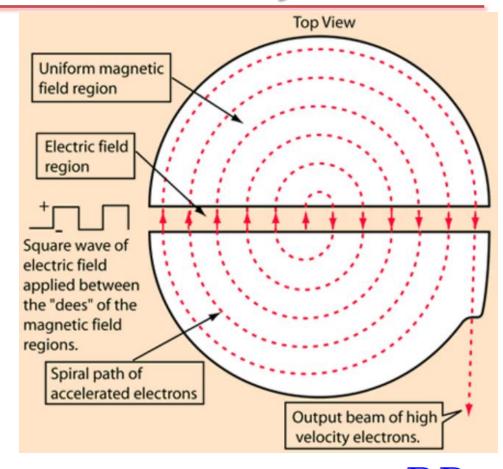
$$R=rac{v}{\omega_c}=rac{m\gamma v}{qB}=rac{p}{qB}$$

[not discussed in lecture]

The cyclotron

The *cyclotron*: acceleration of non-relativistic particles ($\gamma \approx 1$) with electric field at each turn. Rotation at a fixed frequency ω , spiralling outwards ($\mathbb{R}^{-}p$).

In the relativistic case, rotation at a frequency $\omega_{\text{C}} \sim 1/\gamma$. The *synchrocyclotron*: electric field frequency is tuned correspondingly.



For elementary particles with q=e in magnetic field, $p_{\perp}=eBR$ (in SI units)

Dividing by GeV/c, obtain a useful relation for the bending radius:

$$p[\text{GeV/c}] = 0.3 \cdot B[\text{T}] \cdot R[\text{m}]$$

Mass spectrometry (non-relativistic case)

Mass-spectrometry: measurement of the mass-to-charge (m/q) ratio.

Velocity selector (Wien filter):

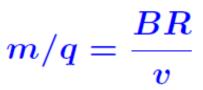
forces due to perpendicular electric and magnetic fields cancel for a specific speed, such that

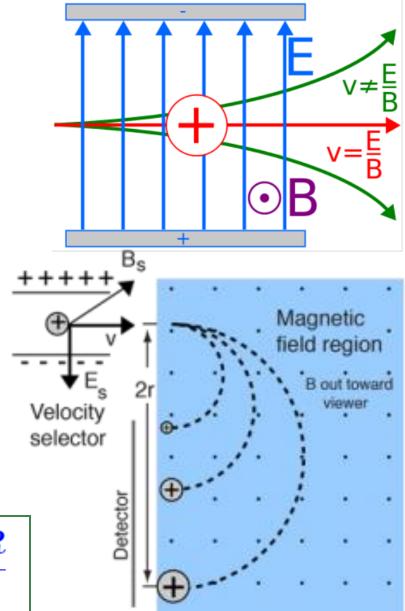
$$qE = qvB$$

v = E/B

For a beam of collimated and velocityselected particles, the radius of the trajectory in a uniform B-field depends on q/m only. Find q/m by measuring the radius:

$$R = \frac{mv}{aR}$$
 therefore





Thomson's parabola method (1)

A collimated beam of particles with a broad momentum spectrum.

E and **B** fields are not uniform, with $\vec{E} \parallel \vec{B}; \quad \vec{E} \perp \vec{v}$

Equations of motion:

$$mrac{d^2x}{dt^2}=qE(z); \qquad mrac{d^2y}{dt^2}=qvB(z) \qquad \qquad \vec{E}
ightharpoons \vec{B}$$

Considering that (for $v_x, v_y \ll v_z$) z = vt,

$$rac{d^2x}{dz^2} = rac{q}{mv^2}E(z); \qquad rac{d^2y}{dz^2} = rac{q}{mv}B(z)$$

Double integration:
$$x(z) = A_E(z) \cdot \frac{q}{mv^2}; \quad y(z) = A_B(z) \cdot \frac{q}{mv}$$

$$A_E(z)$$
 and $A_B(z)$ are known constants, e.g. $A_E(z) = \int\limits_0^z dz' \int\limits_0^{z'} E(z'') dz''$

Thomson's parabola method (2)

In a fixed **z** plane,

$$x = A_E \cdot rac{q}{mv^2}; \quad y^2 = A_B^2 \cdot rac{q^2}{m^2v^2}.$$

Therefore

$$x = \left(A_E/A_B^2\right) \cdot rac{m}{q} y^2$$

Particles of fixed m/q lie on parabola; its slope depends on m/q.

Thomson's parabola method:

discovery of stable ²⁰Ne and ²²Ne isotopes by J.J.Thomson in 1912.

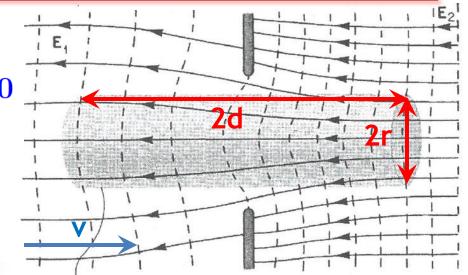


Electrostatic lenses

Gauss's law for the cylinder:

$$\pi r^2(E_1-E_2)+2\pi r\int\limits_{-d}^{d}E_rdz=0$$
 Therefore

$$\int\limits_{-d}E_{r}dz=rac{1}{2}r(E_{2}-E_{1})$$



Radial momentum obtained by an electron traversing in any direction:

$$p_r = -\int\limits_{-\infty}^{\infty} eE_r dt = -\int\limits_{-\infty}^{a} eE_r rac{dz}{v} = rac{er}{2v}(E_1 - E_2)$$
 (directed inwards: focusing)

Angle of deflection:
$$lphapproxrac{|p_r|}{p}=rac{|p_r|}{mv}=rac{er}{2mv^2}(E_2-E_1)=rac{er}{4\mathcal{E}_e}(E_2-E_1)$$

Focal distance of the lens:
$$f=rac{r}{lpha}=rac{4{\cal E}_e}{e(E_2-E_1)}$$

Example: for $E_e=1$ keV, and $E_2-E_1=1$ kV/cm, f=4 keV/1 keV=4 cm.

Summary

- ❖ Motion of charged particles in uniform E+B fields:
 - 1) motion with a constant acceleration along the B-field;
 - 2) uniform rotation about the B-field direction;
 - 3) electrical drift with a velocity

$$ec{v}_d = rac{ec{E} imes ec{B}}{B^2}$$

Cyclotron frequency and radius (including the relativistic case):

$$\omega_c = rac{qB}{\gamma m}$$
 and $R = rac{p}{qB}$

- ightharpoonup In "particle physics" units, $p[\mathrm{GeV/c}] = 0.3 \cdot B[\mathrm{T}] \cdot R[\mathrm{m}]$
- ❖ Mass-spectrometry: measurement of the m/q ratio based on the trajectory in uniform E+B fields.