Upgrade of the ALICE readout and trigger system
Technical Design report

ALICE collaboration

CERN
Geneva,
Switzerland

Document DRAFT Version 1.1
28th Oct 2013
Changes in version 1.1: Tables cleaned up, Pierre and Torsten comments about O2 implemented.
Contents

Chapter 1. Introduction and executive summary 9
1.1 Upgrade strategy 9
1.2 System upgrade overview 10

Chapter 2. Upgrade architecture 15
2.1 Introduction 15
2.2 System architecture 16
2.3 Trigger system 17
2.3.1 Heartbeat trigger 17
2.3.2 Trigger, Timing and clock distribution System - TTS 18
2.4 ALICE Detector Data Link - DDL 19
2.5 The Common Readout Unit - CRU 19
2.6 Readout of detectors not using the Common Readout Unit 24
2.7 Data framing, aggregation and event building 24
2.8 Detector overview 25

Chapter 3. Radiation environment 29
<table>
<thead>
<tr>
<th>Chapter 4. Central Trigger Processor - CTP</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>35</td>
</tr>
<tr>
<td>4.2 Trigger architecture</td>
<td>35</td>
</tr>
<tr>
<td>4.3 Central Trigger Processor</td>
<td>37</td>
</tr>
<tr>
<td>4.4 Local Trigger Unit - LTU</td>
<td>39</td>
</tr>
<tr>
<td>4.5 Trigger and Timing distribution System - TTS</td>
<td>39</td>
</tr>
<tr>
<td>4.5.1 TTS via GBT</td>
<td>39</td>
</tr>
<tr>
<td>4.5.2 TTS via TTC</td>
<td>40</td>
</tr>
<tr>
<td>4.6 Software triggers</td>
<td>41</td>
</tr>
<tr>
<td>4.7 Funding and institutes</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5. TPC/MCH readout ASIC - SAMPA</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 System overview</td>
<td>44</td>
</tr>
<tr>
<td>5.2 ASIC building blocks</td>
<td>45</td>
</tr>
<tr>
<td>5.2.1 Front-end</td>
<td>47</td>
</tr>
<tr>
<td>5.2.2 Digital signal processing</td>
<td>49</td>
</tr>
<tr>
<td>5.3 Configuration and control</td>
<td>50</td>
</tr>
<tr>
<td>5.4 Trigger and dead time</td>
<td>50</td>
</tr>
<tr>
<td>5.5 Readout</td>
<td>51</td>
</tr>
<tr>
<td>5.6 ASIC I/Os</td>
<td>51</td>
</tr>
<tr>
<td>5.7 Schedule, funding and institutes</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6. Muon tracking CHambers - MCH</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>6.2 The present system</td>
<td>57</td>
</tr>
<tr>
<td>6.3 Muon system upgrade</td>
<td>58</td>
</tr>
<tr>
<td>6.3.1 Front-end electronics</td>
<td>58</td>
</tr>
<tr>
<td>6.3.2 Readout electronics</td>
<td>59</td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>60</td>
<td>6.3.3 Data rate and format</td>
</tr>
<tr>
<td>60</td>
<td>6.4 Schedule, funding and institutes</td>
</tr>
<tr>
<td>63</td>
<td>Chapter 7. Muon Identifier - MID</td>
</tr>
<tr>
<td>63</td>
<td>7.1 Overview</td>
</tr>
<tr>
<td>64</td>
<td>7.2 Very Front-End electronics upgrade</td>
</tr>
<tr>
<td>67</td>
<td>7.3 Front-end and readout electronics upgrade</td>
</tr>
<tr>
<td>70</td>
<td>7.4 Schedule, funding and institutes</td>
</tr>
<tr>
<td>71</td>
<td>Chapter 8. Transition Radiation Detector - TRD</td>
</tr>
<tr>
<td>71</td>
<td>8.1 TRD upgrade strategy</td>
</tr>
<tr>
<td>72</td>
<td>8.2 Frontend operation and readout</td>
</tr>
<tr>
<td>72</td>
<td>8.2.1 Current FEE readout</td>
</tr>
<tr>
<td>73</td>
<td>8.2.2 Readout with modified data formats</td>
</tr>
<tr>
<td>75</td>
<td>8.3 TRD Performance with new data formats</td>
</tr>
<tr>
<td>77</td>
<td>8.4 TRD readout and trigger</td>
</tr>
<tr>
<td>77</td>
<td>8.4.1 TRD readout unit</td>
</tr>
<tr>
<td>78</td>
<td>8.4.2 Trigger and busy handling</td>
</tr>
<tr>
<td>79</td>
<td>8.4.3 Schedule, funding and institutes</td>
</tr>
<tr>
<td>81</td>
<td>Chapter 9. Time Of Flight detector - TOF</td>
</tr>
<tr>
<td>81</td>
<td>9.1 Introduction</td>
</tr>
<tr>
<td>82</td>
<td>9.2 TOF present readout and limitations</td>
</tr>
<tr>
<td>83</td>
<td>9.3 Upgrade implementation architecture</td>
</tr>
<tr>
<td>87</td>
<td>9.4 Schedule, funding and institutes</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chapter 14. High Momentum Particle Identification Detector - HMP</td>
<td>133</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>133</td>
</tr>
<tr>
<td>14.2 Implementation architecture</td>
<td>134</td>
</tr>
<tr>
<td>Chapter 15. Alice Cosmic Ray Detector - ACO</td>
<td>137</td>
</tr>
<tr>
<td>Chapter 16. Cost summary</td>
<td>139</td>
</tr>
<tr>
<td>References</td>
<td>141</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction and executive summary

1.1 Upgrade strategy

ALICE (A Large Ion Collider Experiment) is the detector at the CERN LHC dedicated to the study of strongly interacting matter, in particular the properties of the Quark-Gluon Plasma (QGP). The ALICE collaboration plans a major upgrade of the detector during Long Shutdown 2 (LS2), which is at present foreseen to start in Dec. 2017. The scientific goals of this upgrade together with a basic description of the detector upgrade plans can be found in a Letter of Intent (LoI) [1], that was endorsed by the LHCC in September 2012.

The present ALICE detector is shown in Fig. 1.1, a detailed description of the detector can be found in [2] and the performance is summarised in [3]. ALICE will collect 1 nb$^{-1}$ PbPb collisions before LS2, at peak luminosities of $L=10^{27}$ cm$^{-2}$s$^{-1}$, corresponding to a collision rate of 8 kHz. Hardware triggers based on event multiplicity, calorimeter energy and track p_T provide event selectivity that allows sampling of the full luminosity. The maximum readout rate of the present ALICE detector is limited to 500 Hz of PbPb events.

The physics objective of the upgrade is aimed at precision measurements of the QGP, which will be accessible through measurement of heavy-flavor transport parameters, quarkonia down to zero p_T and low mass di-leptons. Since these processes do not exhibit signatures that can be selected by hardware triggers, they can only be collected by a zero bias (minimum bias) trigger. Additional physics topics include studies of jet quenching and fragmentations as well as study of exotic heavy nuclear states.

The ALICE upgrade strategy is therefore based on collecting >10 nb$^{-1}$ of PbPb collisions at luminosities up to $L=6 \times 10^{27}$ cm$^{-2}$s$^{-1}$ i.e. collision rates of 50 kHz, where each collision is shipped to the online systems, either upon a minimum bias trigger or in a self-triggered or continuous fashion. The LoI considers in addition the collection of 6 pb$^{-1}$ of
pp collisions at the equivalent PbPb nucleon energy as well as 50 nb$^{-1}$ of pPb collisions, both at a levelled collision rate of 200 kHz. With this program the statistics for the above mentioned physics topics will be increased by a factor 100 over the numbers achievable with the present ALICE detector up to LS2. In order to further enhance the sensitivity to charmed mesons and to make even the measurement of charmed baryons possible, an upgrade of the silicon tracker with significantly increased secondary vertex resolution and high standalone tracking efficiency will be implemented. Highly efficient triggering will be ensured by a new interaction trigger detector.

The overall goal of the ALICE upgrade therefore consists of replacing the present silicon tracker, upgrading the ALICE sub-detectors to read-out 50 kHz PbPb collisions and 200 kHz pp and pPb collisions at nominal performance as well as implementing a new online system that is capable of receiving and processing the full detector information. Since the TPC drift time of 100 µs is 5 times longer than the average time between interactions, the presently employed gating of the TPC wire chambers must be abandoned and continuously sensitive readout detectors using GEMs will be implemented.

The idea of reading the full detector information, either upon a minimum bias trigger or in a continuous fashion, requires one single trigger level based on an interaction trigger detector only. However, in order to keep flexibility and to allow trigger contributions for the elimination of possible background signals as well as triggers for calibration and commissioning, a Central Trigger Processor (CTP) delivering several trigger signals will be employed.

1.2 System upgrade overview

The specification for the ALICE detector upgrade is set by the collision rate of 50 kHz for PbPb and a collision rate of 200 kHz for pp and pPb. The upgrade architecture is presented in Chap. 2 and in particular the Common Readout Unit (CRU) that will provide the interface between the on-detector electronics and the online computing system. As a baseline the CRU units will sit in a counting room outside the radiation area and will receive data from the detectors through optical fibers via the GBT link.

The radiation load for the upgrade program is discussed in Chap. 3. For the sensors closest to the beampipe we expect an ionizing dose up to 1 MRad and a fluence of 10^{13} hadrons/cm2 in units of 1 MeV neutron equivalent.

The central trigger processor (CTP) will be upgraded to accommodate the higher interaction rate, providing trigger and timing distribution (TTS) to the upgraded detectors and backwards compatibility to detectors not upgrading their TTS interface. This upgrade is described in Chap. 4.

The present Inner Tracking System (ITS) is based on two layers of Silicon Pixel Detectors (SPD), two layers of Silicon Drift Detectors (SDD) and two Layers of Silicon Strip Detectors (SSD). This detector will be replaced by 7 layers of monolithic silicon pixel detectors, as described in the ITS conceptual design report [4] and the ITS technical design report.
The ITS will be able to provide readout at rates of 100 kHz for PbPb and 1 MHz for pp collisions.

The Time Projection Chamber (TPC) is presently based on a gated readout with wire chambers. The electron drift time of $100\,\mu s$ from the central electrode to the readout chambers, together with the ion drift time of $180\,\mu s$ from the sense wires to the gating grid, allows operation only up to about 3.5 kHz. The TPC upgrade therefore foresees the replacement of the wire chambers with GEM detectors, that allow continuous operation to read out 50 kHz PbPb collisions. The TPC electronics will push the digitized and time stamped TPC data to the online systems in a trigger-less mode. For calibration and commissioning purposes, a triggered mode of operation will be implemented as well. The TPC upgrade is described in a specific technical design report [6].

The readout of the TPC detector as well as the muon chambers (MCH) will be performed by a dedicated ASIC (SAMPA) that is presently being developed. The SAMPA chip will contain 32 channels and is based on the ALTRO and S-ALTRO developments. It will perform analog signal shaping, 10 bit digitization at 10 MHz and digital signal processing. The output data are presented on 320 Mbit/s serial ports. This ASIC is discussed in detail in Chap. 5.

The Muon Chamber System (MCH) consists of a sequence of 5 wire chambers stations in the forward region of the experiment. It is presently limited to 1 kHz readout rate and will change the entire readout electronics using the SAMPA chip to digitize the detector signals. It will ship the data to the online system, either in continuous mode or upon an interaction trigger. The upgrade is discussed in Chap. 6.

The Muon Trigger detector (MTR) is at present providing the selection of high p_T single muon and di-muon events with a maximum trigger rate of 1 kHz. As the upgrade trigger strategy does not foresee a muon trigger, all events will be read upon the interaction trigger and the data are used offline for hadron rejection. Consequently the detector will be called Muon Identifier (MID). This upgrade is presented in Chap. 7.

The Transition Radiation Detector (TRD) is presently limited to a few kHz readout rate. Reducing the data volume from the detector by using ‘tracklets’ and increasing the data throughput of the off-detector electronics, a readout rate of 100 kHz for PbPb and pp can be achieved. Since the front-end electronics does not support the use of multi event buffers, a 100 kHz trigger rate corresponds to $\approx 60\%$ of events being read out. At 50 kHz PbPb collisions $\approx 75\%$ of the events will be read-out. Going beyond this number is not conceivable, because a change of the on-detector electronics would be needed, which requires a removal and disassembly of all TRD modules. The TRD upgrade is described in Chap. 8.

The readout rate of the Time Of Flight detector (TOF) is at present limited to 40 kHz by the throughput of the VME system located in the crates at the end of the detector modules. An upgrade of this element will allow TOF to readout >200 kHz PbPb events, which easily satisfies the requirements. The TOF upgrade is described in Chap. 9.

The V0/T0/FMD detector system will be replaced by a Fast Interaction Trigger (FIT) detector, that will provide the minimum bias interaction trigger for the experiment. The FIT
detector system will be located in the forward region of the ALICE detector at positions close to the present V0/T0 location. The FIT will consist of a new assembly of Cherenkov and scintillator detectors with > 99% of efficiency and < 30 ps time resolution for PbPb events. The excellent time resolution is used for vertex selection with 1 cm resolution as well as start time for the TOF detector. Due to its proposed granularity the detector will be also able to provide event plane determination. The trigger and readout electronics of this detector system resembles closely the one of the present T0 system. The detector is described in Chap. 10.

The Zero Degree Calorimeter (ZDC) is located at a distance of 115 m from the interaction point and will change the readout electronics to triggered readout at high rate. It will provide trigger information that can be used to clean the interaction trigger, as described in Chap. 11.

The Electro-Magnetic (EMC) and Photon Spectrometer (PHO) calorimeters use the same readout electronics, which is being upgraded to 50 kHz operation already during LS1. This readout will be kept also beyond LS2 and the implementation of this system into the upgraded readout architecture is discussed in Chap. 12 and Chap. 13. The fact that not all of the 200 kHz minimum bias pp events can be read-out is not considered an issue.

The High Momentum Particle Identifier (HMP) will not be modified and will therefore be capable of reading 2.5 kHz PbPb and pp events. The implementation of this detector into the upgrade readout architecture is discussed in Chap. 14.

The Alice Cosmic Ray Detector (ACO) will not be modified, but is already capable of a readout rate of 100 kHz. The implementation of this detector into the upgrade readout architecture is discussed in Chap. 15.

The online systems will receive the full detector information. Online calibration, event reconstruction and event data reduction will allow writing all the events to tape. The online systems are briefly discussed in Chap. 2 and described in detail in a separate technical design report [7].
Figure 1.1: The present ALICE detector.
Chapter 2

Upgrade architecture

2.1 Introduction

The general approach for the ALICE upgrade is to read out all PbPb events at the anticipated interaction rate of 50 kHz. The detector electronics and the online computing systems are designed to keep the nominal performance, even in case of noise or background larger than anticipated, and scale to twice this performance in case of higher interaction rates.

The high interaction rate and the large event size result in a data flow of ≈ 1 TB/s from the detectors to the on-line system. Partial event reconstruction and data reduction in the online systems results peak data rate to storage of 80 GB/s. The continuous readout of some detectors, the online calibration and the reconstruction will impose a major paradigm shift of the online and offline computing.

In the present system implementation ALICE provides a framework of common readout and trigger interfaces. The detector data link [9][10] provides a standard on-detector source interface unit (SIU) to connect optically to the Data Acquisition Readout Receiver Cards (RORC) located in the DAQ computers. The trigger and timing distribution system is based on the TTC architecture.

ALICE will continue and expand the approach using standard system interfaces for the upgrade. The DDL will be upgraded to a higher bandwidth link and complemented with a common readout unit (CRU). The CRU forms the interface between the detector links and the DDL connecting to the DAQ. It also allows connection to the trigger and timing distribution (TTS) network. Depending on sub detector specifications, detector data sent to the CRU are multiplexed, processed and formatted. The CRU on-detector interface is based on the GBT and optical versatile link [11] protocol and components. For detectors upgrading their TTS interface the central trigger processor (CTP) will provide the information via the GBT protocol. For detectors not upgrading their interfaces backwards compatibility to Run1 and Run2 systems is provided.
2.2 System architecture

Figure 2.1 shows the general ALICE readout scheme. The cavern located CTP connects to the TTS via the Local Trigger Units (LTU) which, depending on detector system, are based on GBT links or the TTC [12] links. The detector front-end systems connect via front-end links to either the ALICE common readout unit (CRU) or detector specific readout systems. The readout systems are connected to the online computing nodes (OCN) and the detector control system (DCS) via the ALICE standard optical detector data link which exists in three transmission speeds (DDL1, 2, 3). Three general readout configurations exist:
2.3 Trigger system

The upgraded ALICE trigger system supports the readout of triggered and continuously readout detectors. Not all subsystems will be capable of reading the full event rate. These detectors will therefore be read out whenever they are not busy. The information is merged with the data from the other sub-detectors in the online system.

The CTP will provide three trigger signals. The latencies and possible contributors to the three trigger signals are shown in Tab. 2.1. The LM signal is produced by the fast interaction trigger detectors (FIT), with a latency that is compatible with the timing requirements of the TRD wakeup signal. At nominal operation this is the only trigger contributor and L0, L1 are simply delayed copies of the LM signal. The L0 timing is chosen such that the EMC, PHO, TOF, ACO and ZDC trigger can be used as L0 contributors. The ZDC allows to clean the interaction trigger in case of excessive background signals outputs. A possible L1 contributor is the EMC jet trigger. The use of trigger signals by the different detectors is summarised in Tab. 2.3.

2.3.1 Heartbeat trigger

As the online system supports the continuous readout of detectors the event building is based on the assembly of data recorded during the a time frame of configurable length.
common to all detectors. In order to minimise the number of events where data are spread across a boundary of two consecutive time frames, the time frame duration will be made long compared to the TPC drift time. A value of at least 100 ms is thus foreseen.

The time frame boundaries are communicated to the detector readout electronics via transmission of non-physics heartbeat triggers allowing the separation of the data stream into pieces for the event building. The heartbeat trigger will be scheduled by the CTP to run with the highest possible priority and with a fixed period [13].

The heartbeat trigger will also be used by the detector electronics to verify whether its local bunch crossing, orbit and trigger counters are still synchronized. Each readout unit will generate an empty heartbeat event when receiving the corresponding trigger. These events will be used by the online systems for data segmentation, fault finding and recovery procedures. The detector electronics of the existing detectors will be modified to handle this combination of physics and heartbeat triggers.

Each readout card will autonomously tag the data using the local copy of the LHC Orbit and the bunch crossing id (BCID). For continuous readout the data will be sent as a continuous flow of successive time frames each preceded with a header containing the time-based tagging. A trailer indicates error cases such as data truncation due to the early arrival of a physics or heartbeat trigger. The triggered readout will function in the same way as it is presently the case: it will send a data block preceded with a header for every trigger, physics or heartbeat.

Figure 2.2 shows how the physics and heartbeat triggers will be used for the continuous and triggered readout.

![Figure 2.2: The usage of physics and heartbeat triggers for the continuous and triggered readout.](image)

2.3.2 Trigger, Timing and clock distribution System - TTS

Depending on the detector implementation, whether the trigger latency is critical and whether the TTS interface is upgraded, three different TTS configurations are implemented. The distribution system for the upgraded detectors is based on GBT links between the CTP and the readout electronics. For non-trigger latency critical systems, such as the TPC and MCH systems, the TTS connects the CTP to the off-detector readout electronics. The off-detector electronics takes care of distributing the trigger and timing
2.4 ALICE Detector Data Link - DDL

signals to the front-end electronics. In case of latency critical systems, such as the ITS, the TTS connects the CTP directly to the on-detector electronics via optical GBT links. Those systems which do not upgrade their TTS interface will continue to use the TTC chip set. As a consequence the upgraded CTP will offer two interfaces, one based on the GBT protocol and one based on the TTC protocol.

The bandwidth of the TTS based on GBT is sufficiently high to transmit for each trigger (physics, software or heartbeat) the full trigger and timing information. The present TTC system used to distribute these messages has a saturation rate of its B-channel used for the distribution of trigger signals which depends upon the length of the trigger message: 150 kHz for 8 words message and 225 kHz for 6 words messages. A reliable usage of the B-channel imposes a limit on the trigger rate to half of these values which will not allow distributing the full information for each trigger. Detectors which will continue the use of the TTC system will receive for each trigger shortened information via the TTC B-channel. In the detector front-end electronics local copies of the BCID, the orbit counters and trigger counters are implemented, which are independently increased and attached to the data packets. The arrival of the heartbeat trigger with the full trigger information allows counter re-synchronisation and, if required, error flagging.

2.4 ALICE Detector Data Link - DDL

The present ALICE data collection is based on common interfaces between the detector readout electronics and the online computing systems: the Detector Data Link (DDL1) [9]. A second version of the link (DDL2) has been developed [10] and will be used by the TPC and TRD detectors during Run2. For the upgrade a higher performance readout solution will be developed. The interface with the online system will be based on the DDL3 or an input-output slot of a PC.

The three generations of DDLs have different clocking speed and form factors. The DDL1 is clocked at 2.125 Gb/s and the DDL1 Source Interface Unit (SIU) is implemented as a radiation-tolerant daughter card plugged on the detector readout card. The DDL2 SIU is implemented as an Intellectual Property (IP) core and can be clocked at 4.25 or 5.3125 Gb/s according to the capabilities of the detector electronics including it. The DDL3 aims at higher bandwidths using Gigabit Ethernet at 10 or 40 Gb/s or Infiniband (IB) at 56 Gb/s. The performance of the DDL1, of the two variations of the DDL2 and of a first DDL3 prototype based on Ethernet are shown in Fig. 2.3.

2.5 The Common Readout Unit - CRU

The CRU acts as the interface between the on-detector systems, the online computing nodes (OCN) and the central trigger processor (CTP). It is based on high performance FPGA processors equipped with multi gigabit optical inputs and outputs. The interface to the detector control system (DCS) is done via the DAQ OCN or via a commercial network.
Figure 2.3: The performance of the DDL1 clocked at 2.125 Gb/s, of the two variations of DDL2 clocked at 4.25 and 5.3125 Gb/s and of a prototype of DDL3 clocked at 10.3125 Gb/s.

switch. A block diagram of this system is shown in Fig. 2.1. Where possible the new detectors or those for which the electronics is redesigned will be read out by the CRU.

Bi-directional front-end links based on the Versatile Link [11] and the GigaBit Transceiver (GBTx) serializer/deserializer chip connect the on-detector systems to the counting room located CRU carrying hit data, configuration and trigger information. Depending whether the automatic SEU error correction is activated the link bandwidth is 3.2 Gb/s or 4.48 Gb/s.

Bi-directional DDLs connect the CRU to the DAQ OCNs carrying hit data and configuration data. The DDL is implemented either as DDL3 or as a slot of the input-output bus of a PC (PCIe Gen 3). Presently for all system and cost considerations a DDL bandwidth of 10 Gb/s is assumed.

The GBT based trigger and timing distribution (TTS) links connect the CTP to the CRU which forwards the trigger data to the on-detector electronics. For some detectors the TTS links transport the busy signal from the CRU to the CTP. For most detectors the CRU only multiplexes the data from several front-end links into more performant high speed data links without any data processing. The TPC is one exception, where the CRU re-orders the data samples according to their position in the pad row allowing a more efficient cluster search in the OCNs.

An alternative approach has been investigated, where the CRU is located in the cavern and electrical front-end links connect the detector to the CRU. 10 GbE interfaces on long fibers connect the CRU to the DAQ computer on comparatively lower number of links due to the superior link bandwidth. For the TPC and ITS these units would sit directly on the ALICE detector and thus need to be tolerant to radiation. The CRU would be based on comparatively low performance radiation tolerant FPGA design. However, in this case one needs to consider the limited access during LHC operation, the difficult installation and maintenance, the required radiation tolerant design and verification campaigns.
In summary, from system level point of view, the GBT based CRU located outside of the detector presents a more robust and clean system with more processing power and flexibility towards future requirements with a lower impact on the cavern infrastructure. Consequently the CRU-counting room option is pursued. For a more detailed evaluation and cost comparison refer to [14].

The ALICE CRU system evaluation is based on the hardware implementation basis of the AMC40/TELL40 system developed in the framework of the LHCb readout [15]. The system is based on the ATCA crate standard. One ATCA carrier board houses 4 advanced mezzanine cards (AMC40) each with up to 36 optical bi-directional links with a bandwidth of up to 10 Gb/s per link. Fig. 2.4 shows a picture of the mezzanine card. Figure 2.5 shows a block diagram of one mezzanine card. In the standard application 24 of the bi-directional optical connections are used to connect 24 GBT front-end links, carrying detector data to the CRU and transmitting configuration and optionally trigger data to the on-detector electronics. The DDL3 links use the remaining 12 bi-directional connections to forward the hit data to the online computing system and send configuration data to the CRU. Cost calculations, as shown in the detector descriptions are based on this configuration. In some applications the number of links between the online computing nodes and the CRU can be reduced, allowing a higher number of front-end links to be connected. Also other similar concepts are taken into consideration, such as the MP7 system developed for CMS [16].

Figure 2.4: AMC40 ATCA mezzanine card. The front-panel contains 36 optical inputs and 36 optical outputs.
For the CRU system implementation next to the TCA crate configuration a solution where
the CRU is plugged directly into PCIe slot of the online computing node is evaluated. In
that case the PCIe bus serves as DDL3. However, in this configuration the CRU output
data bandwidth needs to be decreased to the PCIe bandwidth requiring more CRU boards
and the trigger distribution cannot be done on the crate back plane. Furthermore with the
evolution of PCIe bus long term compatibility might be an issue. Consequently a crate
based CRU solution is considered as base line for the CRU implementation.

The present version of the AMC40 system can accommodate FPGAs which are available
with three matrix sizes. Presently all prototypes have been equipped with FPGAs of the
smallest size. Should it turn out that the matrix size is insufficient for applications, where
data processing on top of the data multiplexing is performed, the two larger pin compatible
FPGAs can be used with the same printed circuit board. Cost estimates and performance
estimates have been done taking the smallest FPGA into account.

The GBT links support forward error correction allowing the correction of transmission
errors due to single event upset effects, however, reducing the data bandwidth from 4.48
Gb/s to 3.2 Gb/s. Fig. 2.6 shows a block diagram containing the main building blocks in
the CRU system based on GBT front-end links. Electrical serial e-links [11] with a length
of a few meters connect to the GBTx e-link interface. Each e-link contains a bi-directional
data link and a clock output. Depending on operation mode the GBT protocol allows
a bit rate setting of 320, 160 or 80 Mbit/s and offers 10, 20 or 40 e-links respectively.
This allows the adaptation of the e-link data rate to the detector application. For instance
the TPC with its high data volume will operate in the 320 Mbit/s mode where only 10
e-links are available for one GBT optical link. The muon chamber detector (MCH) will
use the link at 80 Mbit/s as the data rate per front-end unit is much lower in order to profit
most efficiently from the GBT data bandwidth. The GBTx ASIC decodes the data and
transmits it via the versatile optical link components. Two different types of components
are available. The VTRx is a radiation hard optical transceiver component offering one
input and one output. The VTTx is a double optical transmitter. These two components
allow convenient adaptation of the readout bandwidth to the detector segmentation. For
example in the TPC system, which has many more data links to the CRU than TTS
links to the detector, the VTTx component is used for the front-end links and the VTRx
component for the fewer TTS links. The MCH has as many front-end links as TTS links
and thus will use only the VTRx component. A dedicated slow control adapter (SCA) ASIC [17] provides I2C interfaces to transmit the configuration data to the detector front-end, as well as ADCs to verify the supply voltages and DACs to provide bias.

Figure 2.6: System block diagram with GBT and versatile link chip set.

In the TPC, MCH and MID the trigger latency is not critical and thus one can afford to send the trigger data from the CTP in the cavern to the CRU in the counting room and from there to the detector. Assuming a maximum cable length of twice 150 m an additional 1.5 µs of latency applies. It should be noted that using constant latency GBT links from the CTP to the CRU and again from the CRU to the FEC the trigger information will arrive with constant latency at the front-end. Using a TCA crate solution for the CRU has the advantage that the trigger and timing information can be distributed via the high speed back plane and thus the number number of trigger links from the local trigger units (LTU) to the CRU is very low, see Tab. 4.3.

The ITS plans for 976 1 Gb/s electrical front-end links leaving the detector staves, which extend to ITS 184 readout cards located in the mini frame. These cards multiplex the ITS front-end link protocol into either the GBT compatible format or directly to the DDL3 format. Due to maximum latency restrictions the trigger signal must be routed directly from the CTP to the detector without a detour via the counting room and thus the TTS interface needs to be located on the ITS readout card.

The ALICE collaboration has two institutes responsible for the ALICE CRU design. The Wigner Institute, Hungary, is the institute, which developed and produced the previous version of common readout developments, the DDL1 and DDL2, as well as the ALICE Data Acquisition Readout Receiver Cards version D (D-RORC). The version of the RORC (D-DORC) was designed by the university Frankfurt and produced by the Wigner institute. These cards are already PCIe bus plug-in cards, see Fig. 2.7 and 2.8. The CRU based on ATCA or PCIe is an evolution of the existing developments. The second institute involved is the Variable Energy Cyclotron Centre, VECC, India. The development will be carried out in collaboration with other experiments.

Presently from technical stand point the afore mentioned AMC40 solution and also the CMS developed MP7 are following a similar approach, where high performance FPGAs together with multi channel gigabit transceivers are housed in a microTCA crate. Both
the AMC40 and MP7 system development is advanced and full prototypes are available for evaluation.

2.6 Readout of detectors not using the Common Readout Unit

Those detectors, which do not use the CRU, will use detector specific back-end electronics, which interface to the ALICE OCNs via the DDL1 or DDL2.

Table 2.2 summarises the DDL, CRU FE and TTS-FE link usage detector by detector. DDL links connect to the Online Processing Nodes (OCN). CRU-FE-links carry hit data from the on-detector electronics to the CRU. TTS-FE links carry trigger data from the CRU to the on-detector electronics, see Fig. 2.6. Detectors with 0 TTS-FE links use the CRU but receive the TTS information directly from the CTP at the on-detector electronics. Detectors with no entries for TTS-FE links do not use the CRU.

<table>
<thead>
<tr>
<th>Detector</th>
<th>DDL1</th>
<th>DDL2</th>
<th>DDL3</th>
<th>CRU-FE-links</th>
<th>TTS-FE links</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.125 Gb/s</td>
<td>4.25-5.3125 Gb/s</td>
<td>10 Gb/s</td>
<td>3.2 Gb/s</td>
<td>3.2 Gb/s</td>
</tr>
<tr>
<td>TPC</td>
<td>1836</td>
<td>6336</td>
<td></td>
<td>1764</td>
<td></td>
</tr>
<tr>
<td>MCH</td>
<td>250</td>
<td>500</td>
<td></td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>ITS</td>
<td>60*</td>
<td>184*</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MID</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZDC</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOF</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIT</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACO</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRD</td>
<td></td>
<td>36</td>
<td>1044</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EMC</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHO</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>109</td>
<td>2191</td>
<td>8081</td>
<td>2280</td>
</tr>
</tbody>
</table>

Table 2.2: Number of DDL, CRU-front-end links and TTS-FE links. (* depending on implementation the ITS on-detector electronics will either use DDL3s to connect to the OCNs or CRU data FE-links to the CRU. Numbers shown reflect the CRU configuration.)

2.7 Data framing, aggregation and event building

The global architecture of the online system as presented in the upgrade LoI [1] is shown in Fig. 2.9.

Each detector will split its data over several DDLs to accommodate their segmentation and readout rate. The architecture foresees that online computing nodes (OCN) collects
the data of the DDLs. For detectors using the DDL3 it is planned that 10 DDL3s corresponding to a bandwidth of 100 Gb/s are matched with 3 slots of the most common I/O bus presently available in the PCs, the PCI Express Generation 3 with 8 lanes.

Data (delimited by consecutive heartbeat events) will be assembled in two stages. The time frames delivered by the DDLs connected to each OCN will be assembled together on the basis of the time stamping. A first stage of reduction of the data volume will be applied in the OCN performing local data processing e.g. cluster or tracklet finder. Event Processing Nodes (EPN) perform the second level of data aggregation and a further reduction of the data volume will be applied in the EPN by performing a global processing allowing for example to reconstruct the tracks and associate them to their primary vertex. This will allow to disentangle the different interactions included in a timeframe and to perform the event building.

2.8 Detector overview

For the detector readout system implementation the introduction of the heartbeat trigger and the bandwidth limitations of the TTC system requires all detectors to implement copies of the bunch crossing, orbit and trigger counters. The hardware needs to compare these counters with the LHC counters which are only transmitted in full during a heartbeat event. In case of a discrepancy the detector electronics needs to re-align the counters and communicate the error to the DAQ system. Furthermore for the upgrade the CTP will allow interleaved trigger sequences, where several L0 signals can be sent before the corresponding L1 signals will arrive. Detector systems will implement or upgrade their trigger interface accordingly.

Table 2.3 shows a summary the sub-detectors with respect to their integration in the readout system. Horizontal lines separate detectors with similar readout properties. The first group supports triggered readout and continuous readout. The second group needs a trigger, but has sufficient multi event buffer capability so that when read out at design rate no dead time occurs. The last group has insufficient multi-event buffering and will not have dead time free operation.

Table 2.4 shows the number of channels in the system and the components to be replaced for the upgrade. Details are discussed in the corresponding sub-detector section.
<table>
<thead>
<tr>
<th>Det</th>
<th>triggered by</th>
<th>design RO rate [kHz]</th>
<th>busy [%]</th>
<th>GBT/TTC</th>
<th>CRU used</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>(L0 or L1)</td>
<td>50</td>
<td>0</td>
<td>GBT</td>
<td>y</td>
</tr>
<tr>
<td>MCH</td>
<td>(L0 or L1)</td>
<td>100</td>
<td>0</td>
<td>GBT</td>
<td>y</td>
</tr>
<tr>
<td>ITS</td>
<td>L0</td>
<td>100</td>
<td>0</td>
<td>GBT</td>
<td>y*</td>
</tr>
<tr>
<td>MID</td>
<td>L0 or L1</td>
<td>>100</td>
<td>0</td>
<td>GBT</td>
<td>y</td>
</tr>
<tr>
<td>ZDC</td>
<td>L0</td>
<td>>100</td>
<td>0</td>
<td>GBT</td>
<td>y</td>
</tr>
<tr>
<td>TOF</td>
<td>L0 or L1</td>
<td>100</td>
<td>0</td>
<td>GBT</td>
<td>n</td>
</tr>
<tr>
<td>FIT</td>
<td>L0 or L1</td>
<td>100</td>
<td>0</td>
<td>GBT</td>
<td>n</td>
</tr>
<tr>
<td>ACO</td>
<td>L0 or L1</td>
<td>100</td>
<td>0</td>
<td>TTC</td>
<td>n</td>
</tr>
<tr>
<td>TRD</td>
<td>LM&L0 or L1</td>
<td>50</td>
<td>25</td>
<td>GBT&TTC</td>
<td>y</td>
</tr>
<tr>
<td>EMC</td>
<td>L0&L1#</td>
<td>46</td>
<td>100</td>
<td>TTC</td>
<td>n</td>
</tr>
<tr>
<td>PHO</td>
<td>L0&L1#</td>
<td>46</td>
<td>100</td>
<td>TTC</td>
<td>n</td>
</tr>
<tr>
<td>HMP</td>
<td>L0&L1#</td>
<td>2.5</td>
<td>100</td>
<td>TTC</td>
<td>n</td>
</tr>
</tbody>
</table>

Table 2.3: Readout parameter overview. (" depending on implementation the ITS on-detector electronics will either use DDL3s to connect to the FLPs or GBT data FE-links to the CRU. (# these detectors need L0 and can optionally L1.)

<table>
<thead>
<tr>
<th>Det</th>
<th># of channels</th>
<th>FE ASIC</th>
<th>FEC</th>
<th>MUX</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>5×10^4</td>
<td>17 k SAMPA</td>
<td>3400</td>
<td>CRU</td>
</tr>
<tr>
<td>MCH</td>
<td>10^6</td>
<td>33 k SAMPA</td>
<td>500</td>
<td>CRU</td>
</tr>
<tr>
<td>ITS</td>
<td>25×10^5</td>
<td>25k pixel</td>
<td>200</td>
<td>CRU</td>
</tr>
<tr>
<td>TOF</td>
<td>1.6×10^5</td>
<td>FEERIC</td>
<td>72 DRM</td>
<td>CRU</td>
</tr>
<tr>
<td>MID</td>
<td>21×10^3</td>
<td>upgrade</td>
<td>234</td>
<td>CRM(TOF)</td>
</tr>
<tr>
<td>FIT</td>
<td>$160+64$</td>
<td></td>
<td>commercial&1 ZRC</td>
<td>CRU</td>
</tr>
<tr>
<td>ZDC</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRD</td>
<td>1.2×10^6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMC</td>
<td>18×10^3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHO</td>
<td>17×10^3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP</td>
<td>1.6×10^5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.4: Upgrade effort. (FEC..front-end controller, first data concentration stage, MUX..data multiplexer, second data concentration stage and interface to OCNs.)
Figure 2.7: ALICE C-RORC.

Figure 2.8: ALICE D-RORC.
Figure 2.9: The global architecture of the online system.
Radiation calculations for the present ALICE detector, performed with FLUKA [18] and the VMC interface [19], can be found in [20]. In this chapter, updated calculations that take into account the recent results on measured multiplicities for PbPb, pp and pPb collisions, are presented. The hadron fluence, quoted in 1 MeV neutron equivalents (neq), and the Total Ionising Dose (TID) are the numbers that determine the long term radiation damage of sensors and electronics. The two numbers are given in Figs. 3.1 and 3.2 for a delivered PbPb luminosity of 10 nb$^{-1}$. The rate of hadrons with a kinetic energy >20 MeV passing a given area determines the rate of single event upsets in the microelectronics circuitry and is given in Fig. 3.3 for 50 kHz PbPb collision rate. The simulated geometry still assumes the present ITS detector with detailed implementation of services and support structures. Since the upgraded ITS will use ultra light structures optimized for minimum material budget, one can assume that the upgraded ITS will represent less material than the present one and therefore the obtained numbers present a worst case scenario.

At positions with $-100 < z < 350$ cm, the radiation numbers are dominated by primary tracks originating from the interaction point. At $z < -100$ cm the front absorber is absorbing hadrons that are pointing towards the muon system, which leads to a decrease of the TID but an increase of the hadron fluence due to the lateral escape of neutrons from the absorber.

The planned 6 pb$^{-1}$ pp collisions and 50 nb$^{-1}$ pPb collisions are adding 13 % to the TID and hadron fluence numbers. To accommodate for uncertainties in simulation, background levels and possible future physics programs we assume a safety factor of 10 on top of the simulated numbers for TID and 1 MeV neq hadron fluence. A safety factor of 2 is applied to the instantaneous rate of kinetic energy $E_k > 20$ MeV hadrons. Table 3.1 gives the results for specific locations inside the ALICE detector. In case a range of z-positions is indicated, the table refers to the maximum value inside this interval.

The ITS and MFT detectors have to stand a TID close to 1 MRad and a hadron fluence up to 10^{13} cm$^{-2}$. The flux of high energy hadrons is close to 1.6 MHz/cm2 for these detectors. The radiation levels for the FIT detector are a factor 3-4 lower but still of similar
Table 3.1: Total Ionizing Dose (TID) and 1 MeV neq hadron fluence for 10 nb\(^{-1}\) PbPb + 6 pb\(^{-1}\) pp + 50 nb\(^{-1}\) pPb collisions (including a safety factor 10) as well as high energy hadron fluence for 50 kHz PbPb collisions (including a safety factor 2).

<table>
<thead>
<tr>
<th>Element</th>
<th>(r) (cm)</th>
<th>(z) (cm)</th>
<th>TID (kRad)</th>
<th>1 MeV neq hadron (cm(^{-2}))</th>
<th>>20 MeV hadron (kHz/cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS L0</td>
<td>2.2</td>
<td>[-13.5, 13.5]</td>
<td>646</td>
<td>9.2 \times 10^{12}</td>
<td>1600</td>
</tr>
<tr>
<td>ITS L1</td>
<td>2.8</td>
<td>[-13.5, 13.5]</td>
<td>387</td>
<td>6.0 \times 10^{12}</td>
<td>1000</td>
</tr>
<tr>
<td>ITS L2</td>
<td>3.6</td>
<td>[-13.5, 13.5]</td>
<td>216</td>
<td>3.8 \times 10^{12}</td>
<td>500</td>
</tr>
<tr>
<td>ITS L3</td>
<td>20</td>
<td>[-42.1, 42.1]</td>
<td>13</td>
<td>5.2 \times 10^{11}</td>
<td>28</td>
</tr>
<tr>
<td>ITS L4</td>
<td>22</td>
<td>[-42.1, 42.1]</td>
<td>9</td>
<td>5.0 \times 10^{11}</td>
<td>24</td>
</tr>
<tr>
<td>ITS L5</td>
<td>41</td>
<td>[-73.7, 73.7]</td>
<td>6</td>
<td>4.6 \times 10^{11}</td>
<td>10</td>
</tr>
<tr>
<td>ITS L5</td>
<td>43</td>
<td>[-73.7, 73.7]</td>
<td>4</td>
<td>4.6 \times 10^{11}</td>
<td>9</td>
</tr>
<tr>
<td>MFT D0</td>
<td>2.5</td>
<td>-50</td>
<td>395</td>
<td>6.7 \times 10^{12}</td>
<td>1100</td>
</tr>
<tr>
<td>MFT D1</td>
<td>2.5</td>
<td>-58</td>
<td>392</td>
<td>6.4 \times 10^{12}</td>
<td>1040</td>
</tr>
<tr>
<td>MFT D2</td>
<td>3.0</td>
<td>-66</td>
<td>767</td>
<td>5.9 \times 10^{12}</td>
<td>760</td>
</tr>
<tr>
<td>MFT D3</td>
<td>3.5</td>
<td>-72</td>
<td>427</td>
<td>4.3 \times 10^{12}</td>
<td>520</td>
</tr>
<tr>
<td>MFT D4</td>
<td>3.5</td>
<td>-76</td>
<td>541</td>
<td>4.8 \times 10^{12}</td>
<td>560</td>
</tr>
<tr>
<td>FIT1</td>
<td>5</td>
<td>-80</td>
<td>181</td>
<td>3.0 \times 10^{12}</td>
<td>280</td>
</tr>
<tr>
<td>FIT2</td>
<td>5</td>
<td>340</td>
<td>103</td>
<td>1.4 \times 10^{12}</td>
<td>200</td>
</tr>
<tr>
<td>TPC In</td>
<td>79</td>
<td>[-260, 260]</td>
<td>2.1</td>
<td>3.4 \times 10^{11}</td>
<td>3.4</td>
</tr>
<tr>
<td>TPC Out</td>
<td>258</td>
<td>[-260, 260]</td>
<td>0.3</td>
<td>5.2 \times 10^{10}</td>
<td>0.7</td>
</tr>
<tr>
<td>TRD</td>
<td>290</td>
<td>[-390, 390]</td>
<td>0.4</td>
<td>4.8 \times 10^{10}</td>
<td>0.54</td>
</tr>
<tr>
<td>TOF</td>
<td>370</td>
<td>[-370, 370]</td>
<td>0.13</td>
<td>2.6 \times 10^{10}</td>
<td>0.26</td>
</tr>
<tr>
<td>EMCAL</td>
<td>430</td>
<td>[-340, 340]</td>
<td>0.06</td>
<td>1.5 \times 10^{10}</td>
<td>0.02</td>
</tr>
<tr>
<td>MCH S1</td>
<td>19</td>
<td>-553</td>
<td>0.42</td>
<td>4.2 \times 10^{11}</td>
<td>3</td>
</tr>
<tr>
<td>MCH S2</td>
<td>24</td>
<td>-686</td>
<td>0.19</td>
<td>1.4 \times 10^{11}</td>
<td>1</td>
</tr>
<tr>
<td>MCH S3</td>
<td>34</td>
<td>-983</td>
<td>0.14</td>
<td>1.6 \times 10^{11}</td>
<td>0.9</td>
</tr>
<tr>
<td>MCH S4</td>
<td>45</td>
<td>-1292</td>
<td>0.18</td>
<td>3.0 \times 10^{11}</td>
<td>1</td>
</tr>
<tr>
<td>MCH S5</td>
<td>50</td>
<td>-1422</td>
<td>0.91</td>
<td>2.5 \times 10^{11}</td>
<td>0.7</td>
</tr>
<tr>
<td>CTP Rack</td>
<td>600</td>
<td>-1295</td>
<td>4.8 \times 10^{-3}</td>
<td>7.8 \times 10^{9}</td>
<td>0.03</td>
</tr>
</tbody>
</table>
3 Radiation environment

magnitude. The TPC electronics located at the inner radius of the service support wheel has to stand a dose of 2.1 kRad and 3.4 kHz of high energy hadrons. For muon station 1 the radiation levels are very similar, so these numbers set the scale for the radiation tolerance of the common TPC/MCH readout chip, SAMPA.

It must be noted that the above numbers for TID and 1 MeV neq fluence are only up to a factor of 2 higher than the numbers in [20] that were originally assumed for the ALICE design, because of different assumptions on multiplicity and running conditions. The above numbers for \(E_k > 20 \) MeV hadron fluence are only up to a factor of 3 larger than the ones originally assumed. The electronics of TRD, TOF, EMCAL, PHOS and HMPID, that will remain unchanged after LS2, will therefore still be well suited for the ALICE upgrade.
Figure 3.1: Total Ionizing Dose for an integrated PbPb luminosity of 10 nb^{-1} in the ALICE central barrel.

Figure 3.2: Hadron fluence for an integrated PbPb luminosity of 10 nb^{-1} in the ALICE central barrel.
Figure 3.3: Rate of hadrons with energy of >20 MeV for a PbPb collision rate of 50 kHz.
Chapter 4

Central Trigger Processor - CTP

4.1 Introduction

The Central Trigger Processor (CTP) will manage a system of detectors with different properties as shown in Tab. 4.2. The majority of detectors which will read out the nominal interaction rate are dead time free. However, in order to provide backwards compatibility to detectors not being upgraded, the trigger system must cope with detectors which will have dead time during the readout.

The strategy for selecting events for readout will be different from that employed in previous runs. Previously, despite the fact that ALICE events are highly complex, the trigger strategy was to combine a Minimum Bias sample with a sample selected according to thresholds in high \(E_t \) (calorimeter triggers), high \(p_t \), or high multiplicity [2].

The interaction rates will increase to \(\approx 50 \text{kHz} \) for PbPb, and \(200 \text{kHz} \) for pp and pPb [1]. Where feasible a safety margin of 2 is applied in the system design. The strategy for the upgraded ALICE system is to select and read out all interactions and apply an online data reduction in the online computing system. To achieve this, the combination of triggerless readout and a minimum bias trigger based on the new forward FIT detector is used. A few additional inputs allow for cosmic triggers and calorimeter based triggers to enhance rates for some types of events where the minimum bias trigger is inefficient.

4.2 Trigger architecture

The overall system architecture is shown in Fig. 4.1. Trigger inputs are collected to satisfy three different latencies, given three different levels shown as LM, L0 and L1. The times, calculated relative to the time of the interaction, are given in Tab. 4.2.
<table>
<thead>
<tr>
<th>Det</th>
<th>Triggered by</th>
<th>Design RO rate [kHz]</th>
<th>Busy [%]</th>
<th>TTS</th>
<th>CRU used</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC (L0 or L1)</td>
<td>50</td>
<td>0</td>
<td>GBT</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>MCH (L0 or L1)</td>
<td>100</td>
<td>0</td>
<td>GBT</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>ITS L0</td>
<td>100</td>
<td>0</td>
<td>GBT</td>
<td>y*</td>
<td></td>
</tr>
<tr>
<td>MID L0 or L1</td>
<td>>100</td>
<td>0</td>
<td>GBT</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>ZDC L0</td>
<td>>100</td>
<td>0</td>
<td>GBT</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>TOF L0 or L1</td>
<td>100</td>
<td>0</td>
<td>GBT</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>FIT L0 or L1</td>
<td>100</td>
<td>0</td>
<td>GBT</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>ACO L0 or L1</td>
<td>100</td>
<td>0</td>
<td>TTC</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>TRD LM & L0 or L1</td>
<td>50</td>
<td>25</td>
<td>GBT & TTC</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>EMC L0 & L1#</td>
<td>46</td>
<td>100</td>
<td>TTC</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>PHO L0 & L1#</td>
<td>46</td>
<td>100</td>
<td>TTC</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>HMP L0 & L1#</td>
<td>2.5</td>
<td>100</td>
<td>TTC</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1: Readout parameter overview. (* depending on implementation the ITS on-detector electronics will either use DDL3s to connect to the FLPs or GBT data FE-links to the CRU. (# these detectors need L0 and can optionally L1.)

<table>
<thead>
<tr>
<th>Level</th>
<th>Trigger Input to CTP [ns]</th>
<th>Trigger Output at CTP [ns]</th>
<th>Trigger Decision at Detector [ns]</th>
<th>Contributing Detectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>600</td>
<td>700</td>
<td>900</td>
<td>FIT</td>
</tr>
<tr>
<td>L0</td>
<td>1200</td>
<td>1300</td>
<td>1500</td>
<td>ACO, EMC, PHO, TOF, ZDC</td>
</tr>
<tr>
<td>L1</td>
<td>5700</td>
<td>5800</td>
<td>6000</td>
<td>EMC, ZDC</td>
</tr>
</tbody>
</table>

Table 4.2: Latency and contributors of the different trigger signals.
The LM latency is the same as in Run2, and is suitable for generating a wake-up signal for the TRD electronics. The LM trigger will be provided by the FIT detector. The latency of the LM signals is 600 ns and has three components: signal propagation from detector to FEE (≈ 250 ns); signal processing (≈ 150 ns); propagation of processed signal to the CTP (≈ 200 ns). However, it will not be possible to generate a trigger signal from the electromagnetic calorimeter (EMC) early enough for this trigger level, and for this reason level L0 signal is retained. The ZDC is optionally available to clean the minimum bias trigger provided by the FIT. The FIT detector is not suitable for cosmic ray triggers. In this case TOF and ACO will be used.

As in the present system trigger decisions are transmitted from the CTP to the individual detectors using an upgraded Local Trigger Unit (LTU). Owing to the reduced number of trigger inputs with respect to Run1 and Run2, for the upgrade it will be possible to implement a lookup-table trigger, allowing full flexibility in the specification of trigger logic. However, due to the triggerless strategy, there will be relatively few trigger classes [21], with most events selected by a Minimum Bias trigger with subsequent data reduction in the online computing system. The selection of readout detectors will be different from previous runs. Previously, a trigger was successful only if every one of a list of readout detectors was available to read out the data (the list defining a trigger “cluster”). For the upgrade, if a trigger condition is satisfied, the event is read out with the full set of continuous readout detectors, plus all other available detectors. This strategy in effect treats each detector as a separate cluster, so any combination of detectors could be read out for a given event. At the same time the BUSY requirements of every detector can be treated independently of other detectors and interleaving of triggers from different levels is allowed where possible. It could turn out that this strategy would lead to insufficient numbers of events being read out with useful combinations of detectors, for example TRD, TOF and HMP, which are all used for particle identification. To allow for this possibility, the trigger logic can in addition define further clusters consisting of groups of detectors, as at present, and will balance the bandwidth between a free selection of all available detectors and a restricted choice requiring a given combination.

4.3 Central Trigger Processor

The functions discussed in the previous section can be implemented in a new CTP board combining the functions of the current CTP BUSY, L0, L1 and FO boards. This obviates the need to transfer data across the backplane and therefore eliminates the CTP dead time. The board incorporates the XILINX-7-series KINTEX FPGA, provided with sufficient memory to reproduce and extend the snapshot facilities of the current CTP. In particular the CTP will be provided with 1 GB of DDR3 memory, partitioned so as to allow adequate storage of snapshot data, with reserved space for future applications.

The XILINX-7 series also provides a facility for automatic recovery from radiation induced single and double event upsets for configuration. It is self-correcting after a CRC check. Since the CTP will be placed in a site of only moderate radiation (see Table 3.1), this automatic recovery procedure is sufficient for the CTP operation [22].
Figure 4.1: ALICE system block diagram.
The board will have a 10 Gb/s optical ethernet link to the DAQ, using the UDP protocol, for transmission of interaction records and trigger data, and a second 1 Gb/s optical ethernet link to DCS for configuration, control and monitoring, using the IPbus protocol. Interaction records consist of a series of record listings each orbit and the interactions which occur in it. The trigger data for every L0 and L1 trigger consist of event identification, trigger class mask and detector mask.

The CTP will also communicate with up to 24 Local Trigger Units (LTUs), one for each ALICE detector, using custom high speed serial links. The LTU is described in the next section.

4.4 Local Trigger Unit - LTU

The Local Trigger Unit combines the functions of transmission of trigger signals and emulation of the CTP for use in detector development, in a way similar to that implemented in the current LTU [23]. The LTU (Fig. 4.2) will have the possibility to send trigger signals to detectors via the GBT or the TTC protocol. For the GBT there will be ten separate bi-directional GBT links which can also be used for upstream BUSY collection. In the TTC case the LTU optical links will provide the optical signal according to TTC protocol and BUSY is propagated by dedicated LVDS cables. In addition there will be provision for clock, orbit and external trigger inputs. Monitoring and control will be provided by a 1Gb/s optical Ethernet link using the IPbus protocol.

4.5 Trigger and Timing distribution System - TTS

Three different types of links are used for trigger distribution. The LM trigger level is distributed by a copper LVDS cable to the TRD, satisfying the low latency requirement. As can be seen from Tab. 4.1, two basic types of link will be used for the transmission of trigger signals and data at L0 and L1 levels. Detectors upgrading their TTS interface will use GBT links [11], while the other detectors continue to use the TTC system.

4.5.1 TTS via GBT

The synchronous trigger signals at L0 and L1 levels will be followed by a trigger message containing event identification, trigger class mask and detector mask.

With respect to the distribution links, the detectors using the GBT protocol are considered individually, as there are several distinct cases, as shown in Tab. 4.3. For the TPC, MCH, MID and ZDC the distribution of trigger signals will use the CRU. The reception of trigger signals is not time-critical. The design of the system implies that under nominal operation conditions it does not get busy. The detector only gets busy in case of an error condition or
Table 4.3: TTS-GBT connections to detector systems. CR stands for Counting Room and Cav for Cavern.

<table>
<thead>
<tr>
<th>Detector</th>
<th>TTS links</th>
<th>TTS type</th>
<th>Position of CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>7</td>
<td>active GBT</td>
<td>CR</td>
</tr>
<tr>
<td>MCH</td>
<td>1</td>
<td>active GBT</td>
<td>CR</td>
</tr>
<tr>
<td>ITS</td>
<td>184</td>
<td>passive GBT</td>
<td>Cav</td>
</tr>
<tr>
<td>MID</td>
<td>1</td>
<td>active GBT</td>
<td>CR/Cav</td>
</tr>
<tr>
<td>ZDC</td>
<td>1 & 1</td>
<td>active GBT</td>
<td>CR & Cav</td>
</tr>
<tr>
<td>TOF</td>
<td>72</td>
<td>passive GBT</td>
<td>Cav</td>
</tr>
<tr>
<td>FIT</td>
<td>1</td>
<td>active GBT</td>
<td>CTP area</td>
</tr>
<tr>
<td>TRD</td>
<td>1</td>
<td>active GBT & TTC</td>
<td>CR/Cav</td>
</tr>
<tr>
<td>EMC</td>
<td>1</td>
<td>TTC</td>
<td>Cav</td>
</tr>
<tr>
<td>PHO</td>
<td>1</td>
<td>TTC</td>
<td>Cav</td>
</tr>
<tr>
<td>HMP</td>
<td>1</td>
<td>TTC</td>
<td>Cav</td>
</tr>
<tr>
<td>ACO</td>
<td>1</td>
<td>TTC</td>
<td>Cav</td>
</tr>
</tbody>
</table>

during operation under non-nominal conditions. Thus the BUSY transmission is not time-
critical and generating the BUSY signal at the level of the CRU is sufficient. Consequently
bi-directional GBT based trigger links connect the CTP with the counting room located
CRU. Table 4.3 shows the number of required TTS links. Even for the TPC seven links
only are needed, which corresponds to the number of TCA crates estimated.

The trigger latency of the ITS detector is time critical. In this case a propagation detour via
the counting room is avoided by directly routing the links from the CTP to the 184 mini-
frame located ITS readout boards. The unidirectional ITS trigger links are fanned out
passively using optical splitters. Each LTU has 10 optical outputs and when combined
with 1:32 optical splitters, a sufficient number of links is provided to cover the distribution
of signals to all ITS readout boards. The busy signal transmission is done via the data
links.

TRD front-end electronics still uses a trigger interface based on TTC, whereas the CRU
based readout electronics uses GBT based TTS links. TOF and FIT will upgrade the TTS
interface to GBT links.

4.5.2 TTS via TTC

The restricted bandwidth of the TTC B-channel dictates the format for the transmission
of trigger signals and data. While in runs 1 and 2 the bulk of the trigger data was trans-
mitted to each TTC destination as a broadcast message in the B-channel, the increased
interaction rate in the upgraded system means that this strategy would lead to excessive
delays before the data could be transmitted. Instead, a synchronous trigger in the A-
channel will be generated and only the 12 least significant bits of event identification will
be transmitted in the B-channel, asynchronously. The full trigger data will be transferred
as CTP readout, and attached to the data at the event-building stage. To provide the L0
and L1 signals, the A-channel will be coded, L0 corresponding to binary 10 and L1 to 11
transmissions, thus not allowing two subsequent triggers within 25 ns for detectors using TTS via TTC.

4.6 Software triggers

The CTP will provide several different types of triggers in addition to physics triggers, i.e. those which are initiated by coincidences between different trigger inputs. The software triggers are initiated by a request from the CTP trigger processor. There are two types of software triggers. An asynchronous trigger is generated at the moment the trigger request is issued. A synchronous trigger is issued at a specific selected bunch crossing.

During data taking detectors will require a number of different types of calibrations. These can be fulfilled by generating a special class of triggers called calibration triggers. Calibration triggers are treated as a special class of software triggers allowing the generation of a calibration pulse before the readout triggers are sent [24].

For the upgrade in addition the heartbeat software trigger (see section 2.3.1) will be provided to designate the boundary between two data frames for continuous readout detectors and to provide a synchronisation check for local LHC counters.

In order to perform these functions, three pieces of information need to be transmitted:

(a) a synchronous pulse marking the trigger, always at a fixed bunch crossing;

(b) 2 bits to mark whether the heartbeat trigger is normal or is also a start-of-data (SOD) or end-of-data (EOD) marker;

(c) 32 bits to transmit the orbit number.
On the TTC system, (a) and (b) are sent as a high priority short broadcast, while data (c) are sent as three long broadcast words of 12 bits. The format for the GBT protocol is more straightforward as the link offers a high data bandwidth.

4.7 Funding and institutes

The cost estimate for the trigger system consisting of CTP, LTU and optical splitters is given in Tab. 4.4.

University of Birmingham take responsibility of the system design, implementation, production and installation.
Chapter 5

TPC/MCH readout ASIC - SAMPA

Operating the TPC at a PbPb collision rate of 50 kHz requires the present limitations imposed by the operation of the gating grid to be overcome. Thus, the present MWPC based readout chambers will be replaced by GEM detectors, which feature intrinsic ion blocking without additional gating and exhibit excellent rate capabilities. As the drift time will be higher than the average time between interactions a trigger-less, continuous readout is implemented. This implies the upgrade of the existing front-end ASICs to a new readout ASIC, the SAMPA ASIC, providing continuous readout.

Furthermore, in order to operate the muon chambers (MCH) with an interaction rate of 50 kHz the present front-end electronics cannot be used and will be replaced by the SAMPA ASIC. The SAMPA ASIC adapts to different detector signals with programmable parameters.

The SAMPA ASIC is an evolution of the presently used TPC front-end electronics, where front-end amplifier and shapers sit in the 16-channel PASA ASIC [6][25]. The 16-channel ALTRO [26] chip digitizes, processes, compresses and stores the data in a multi-event memory. The Analog-to-Digital converters embedded in the chip have a 10-bit dynamic range and are used in the TPC at 10 MHz. After digitisation, a pipelined Data Processor is able to remove from the input signal a wide range of perturbations, related to the non-ideal behaviour of the detector, temperature variation of the electronics and environmental noise. Moreover, the Data Processor is able to suppress the pulse tail within 1 µs after the peak with 1 % accuracy, in order to improve their identification. The signal is then compressed by removing all data below a programmable threshold, except for a specified number of pre- and post-samples around each peak. This produces non-zero data packets. Eventually, each data packet is marked with its time stamp and size - so that the original data can be reconstructed afterwards - and stored in the multi-event memory. A further evolution of the system is the S-ALTRO ASIC [27]. The architecture is based on the ALTRO ASIC. The main difference is the integration of the charge shaping amplifier in the same IC. The SAMPA ASIC will integrate 32 channels of the full data processing chain and support continuous and triggered readout. The design of the SAMPA has already been started, taking the additional specifications compared to its predecessors into account.
5.1 System overview

SAMPA contains positive/negative polarity Charge Sensitive Amplifiers (CSA), which transform the charge signal into a differential semi-Gaussian voltage signal, that is digitized by a 10-bit 10 Msamples/s ADC. After the ADC a digital signal processor eliminates signal perturbations, distortion of the pulse shape, offset and signal variation due to temperature variations. SAMPA contains 32 channels per chip that concurrently digitize and process the input signals as shown in Fig. 5.1. The data readout takes place continuously at a speed of up to 1.28 Gbps by four 320 Mb/s e-links [11].

The data readout can be performed in continuous mode or triggered mode. In continuous mode the readout of a programmable number of samples is performed trigger-less if the input signal exceeds the programmable threshold value. For the TPC application a design rate of 50 kHz with 30 % occupancy is assumed. For the MCH the design rate is 100 kHz and 10 % occupancy. Software triggers are accepted in continuous mode for calibration and synchronisation purposes. In triggered mode data readout of programmable number of samples is performed only upon reception of an external trigger with a maximum latency < 9.6 µs. Optionally all channels can be read out, not only those crossing the threshold. Triggers arriving during an active readout will be accepted. In that case the active readout will be extended by the new arriving trigger for the programmable number of samples and status information is sent to acknowledge the readout extension. Optionally a programmable number of pre/post samples before/after the input signal crossed the threshold in continuous mode or the external trigger mode arrived can be read out.
The SAMPA ASIC is composed of a positive/negative polarity Charge Sensitive Amplifier (CSA) with a capacitive feedback C_f and a resistive feedback R_f connected in parallel, a Pole-Zero Cancellation (PZC) network, a high pass filter, two bridged-T second order low pass filters, a non-inverting stage, a 10 Msamples/s 10-bit ADC and a Digital Signal Processor (DSP) block, as shown in Fig. 5.2. Optionally the ADC can operate at 20 Msamples/s. The first shaper is a scaled-down version of the CSA and generates the first two poles and one zero. A copy of the first shaper connected in unity gain configuration is implemented in order to provide a differential mode input to the next stage. The second stage of the shaper is a fully differential second order bridged-T filter and it includes a Common-Mode Feed-Back network (CMFB). The non-inverting stage adapts the DC voltage level of the shaper output to use the full dynamic range of the ADC. It consists of a parallel connection of two equally designed Miller compensated amplifiers. The ADC is a differential 10-bit 10 Msamples/s SAR (successive approximation) ADC implemented with a low power switching technique. The DSP part is composed of digital filters, a data format unit, a ring buffer, a trigger manager block, a configuration register bank, a control state machine, and four 320 Mb/s e-links. The chip will be fabricated in 0.13 µm CMOS technology.
Specifications of the new front-end ASIC (SAMPA)

<table>
<thead>
<tr>
<th>Specification</th>
<th>TPC</th>
<th>MCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage supply</td>
<td>1.25V</td>
<td>1.25V</td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive/Negative</td>
<td>Positive/Negative</td>
</tr>
<tr>
<td>Detector capacitance (Cd)</td>
<td>18.5pF</td>
<td>40pF - 80pF</td>
</tr>
<tr>
<td>Peaking time (ts)</td>
<td>80ns or 160ns</td>
<td>300ns</td>
</tr>
<tr>
<td>Shaping order</td>
<td>4th</td>
<td>4th</td>
</tr>
<tr>
<td>Equivalent Noise Charge (ENC)</td>
<td>$< 536e@ts=80ns^*$</td>
<td>$< 950e @ Cd=40p^*$</td>
</tr>
<tr>
<td>Linearity</td>
<td>100fC or 67fC</td>
<td>500fC</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>20mVfC or 30mVfC</td>
<td>4mVfC</td>
</tr>
<tr>
<td>Return to baseline time</td>
<td>$<164ns@ts=80ns$</td>
<td>$<541ns$</td>
</tr>
<tr>
<td>Non-Linearity (CSA + Shaper)</td>
<td>$< 1%$</td>
<td>$< 1%$</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>$< 0.3%@ts=80ns$</td>
<td>$< 0.2%@ts=300ns$</td>
</tr>
<tr>
<td>ADC effective input range</td>
<td>2Vpp</td>
<td>2Vpp</td>
</tr>
<tr>
<td>ADC resolution</td>
<td>10-bit</td>
<td>10-bit</td>
</tr>
<tr>
<td>Sampling Frequency</td>
<td>10Msamples/s or 20Msamples/s</td>
<td>10Msamples/s</td>
</tr>
<tr>
<td>INL (ADC)</td>
<td><0.65 LSB</td>
<td><0.65 LSB</td>
</tr>
<tr>
<td>DNL (ADC)</td>
<td><0.6 LSB</td>
<td><0.6 LSB</td>
</tr>
<tr>
<td>SFDR (ADC)**</td>
<td>68dBc</td>
<td>68dBc</td>
</tr>
<tr>
<td>SINAD (ADC)**</td>
<td>57dB</td>
<td>57dB</td>
</tr>
<tr>
<td>ENOB (ADC)</td>
<td>< 9.2-bit</td>
<td>< 9.2-bit</td>
</tr>
<tr>
<td>Power consumption (per channel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC</td>
<td>2mW (4mW)</td>
<td>2mW (4mW)</td>
</tr>
<tr>
<td>CSA + Shaper</td>
<td>6mW</td>
<td>6mW</td>
</tr>
<tr>
<td>Channels per chip</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

* $R_{res} = 70\Omega$

** @ 0.5MHz, 10Msamples/s
5.2 ASIC building blocks

5.2.1 Front-end

Since the charge \(Q_i \) delivered by the TPC or MCH detectors is very small and short (typically 7 \(\mu \)A during 1 ns), it is unsuitable for immediate signal processing. Therefore, the input signal is first integrated and amplified by the CSA producing at its output a voltage signal \(V_{CSA} \), whose amplitude is proportional to the total charge \(Q_i \) and characterized by a long decay time constant \(\tau = R_f \cdot C_f \). The \(C_f \) values are 600 fF@ts=80 ns, 1.2 pF@ts=160 ns and 2.4 pF@ts=300 ns, that are defined by the gain and linear range requirement and the \(R_f \) value of 6M\(\Omega \) is defined by the noise specification [25][28]. The relatively long discharge time constant of the CSA \(\tau \) makes it vulnerable to pile-up. The low frequency part of the pulse is then removed by the high pass filter \((C_{dif} \cdot R_{dif}) \). Due to the exponential decay of the CSA feedback network in combination with the differentiator network \((R_{dif} \cdot C_{dif}) \), an undershoot is created at the shaper output with the same time constant as the CSA of \(\tau = R_f \cdot C_f \). This undershoot is removed by creating a pole-zero cancellation circuit by adding a resistance \(R_{pz} \) in parallel to the capacitor \(C_{dif} \) in the differentiator stage. It creates a Zero in the transfer function that cancels the low frequency pole introduced by the CSA feedback network [29][30]. The chosen topology of the CSA amplifier (Fig. 5.3) is based on a single-ended folded cascode amplifier followed by a source follower. The CSA has been optimized for the specification of detector capacitance and shaping time listed in Tab. 5.1.

The CSA shaping time can be configured to values of 80 ns and 160 ns for the TPC and 300 ns for the MCH. The sensitivity can be set to 20 or 30 mV/fC for the TPC and 4 mV/fC for the MCH by two external pins. As shown in Fig. 5.3a, switches \(S_1-S_2 \) are used to adjust capacitances \(C_f \) and \(S_3-S_4 \) to adjust \(C_{dif} \) for each case of peaking time. The capacitors of the T-bridge network of the semi-Gaussian shaper are adjusted for 80 ns, 160 ns or 300 ns of shaping time achieved by placing additional capacitors in parallel. It is performed with switches based on NMOS and PMOS transistors, sized to provide low series resistance. The required sensitivity is controlled by \(R_G \) trimming (Fig. 5.2) which is made by putting additional resistances in parallel. The maximum amplitude of the output pulse is 2 Vpp. The output pulse waveform of the semi-Gaussian shaper is shown in Fig. 5.3b for 160 ns of shaping time (20 mV/fC of sensitivity) and 300 ns of shaping time (4 mV/fC of sensitivity).

The CMFB network of the second shaper stage establishes a stable common-mode voltage \(V_{CM} \) of 600 mV at the output of the second shaper. The chosen CMFB network consists of a resistor-capacitor network. This configuration takes the average of the two amplifier outputs and compares it with an externally given voltage \(V_{CM} \) and adjust the polarization current of the first stage of the amplifier.

A capacitive successive approximation (SAR) topology is used to design the 10Msample/s 10-bit full differential ADC. The block diagram of the ADC is shown in Fig. 5.4. The main parts of the circuit are: capacitive array, switches, comparator and the SAR control logic. The capacitor array performs sample and hold and the digital to analog converter functions. A switching strategy with low energy dissipation per cycle is utilized.

The chip will be fabricated in TSMC 0.13 \(\mu \)m CMOS technology with nominal voltage supply of 1.2 V. The analog blocks and digital blocks will have separate supply pads
Figure 5.3: (a) Transistor level schematic of the CSA; (b) Output pulse waveform of the semi-Gaussian shaper.

(Voltage supply and ground) with high isolation to avoid digital noise coupling. A 25 µA stable current is generated on chip to bias the CSA and the Semi-Gaussian shaper (32 channels). An external resistor of high precision is used to control the bias current value. Another external resistance is used to control the bias of the ADC. It minimizes switching noise coupling from the ADC.
5.2 ASIC building blocks

5.2.2 Digital signal processing

The signal processing is performed in 4 steps: a first correction and subtraction of the signal baseline, the cancellation of long-term components of the signal tail, a second baseline correction and zero suppression.

The first baseline correction (BC1) purpose is to decrease noise and systematic error effects. This block has two operation modes: subtraction mode and conversion mode. The subtraction mode consists of subtracting a value from the input (D_{in}). This mode is divided in three kinds:

- Fixed: subtracts a constant value, called fixed pedestal, set previously in a register.
- Time dependent: subtracts a variable value which is stored in the pedestal memory (4096x10-bit). The values are accessed from first to last, so the order of the subtractions is the same for every processing window.
- Self-calibrated: a baseline value is calculated outside the processing window. It is called variable pedestal (V_{pd}), and its calculation is performed by an infinite impulse response (IIR) filter. If this option is selected, the filter is activated receiving as input D_{in} and providing $D_{in} - V_{pd}$ as output, so V_{pd} is not accessible.

The conversion mode uses the input data to address the pedestal memory, so we have the output as a function of V_{in}.

The Tail Cancellation Filter (TCFU), is a 4-stage IIR filter used with the intention of cancelling a slowly varying signal. The signal rise time is fast, but its fall time is much slower and has a rather complex shape that varies from pad to pad.

The second level of baseline correction (BC2) is applied to the signal during the PTW (Processing Time Window) and corrects signal perturbations created by non-systematic effects. The threshold values have a constant component which is the same for the whole chip and a variable component which is channel specific so it must be set individually for each of the channels.

The zero suppression (ZSU) block eliminates data below a programmable threshold. An option to switch off the zero suppression is foreseen.
5.3 Configuration and control

The SAMPA ASIC is configured via an independent serial interface. Data readout can take place at the same time. In order to keep compatibility with the GBT slow control adapter ASIC, SCA \[17\], SAMPA can be configured via an I2C interface. In addition, a high speed serial configuration and control interface operating at 320 Mb/s serial interface using one input and one output differential pair, is foreseen.

5.4 Trigger and dead time

SAMPA supports two trigger modes: external and continuous mode. The readout works identically in both trigger modes. The number of samples per event is programmable (0 to 4095), as well as the number of pre-samples (0 to 63), which is the number of samples acquired before the external trigger arrived or the signal went above threshold. Also the number of post samples after the signal went below threshold is programmable (0 to 7). The number of samples per event and number of pre-samples are common to the 32 channels.

The trigger is sent either via an external pin or via an instruction with maximum latency \(<= 9.6 \mu s\). In continuous mode the ASIC operates without an external trigger. It reads-out a channel when the data rises above a threshold in this channel and optionally reads-out the whole chip.

Provided the average interaction rate and occupancy does not exceed specifications the SAMPA cannot get busy as it is specified for continuous readout. During operation the interaction rate or occupancy might get too high for the design readout rate. In that case the SAMPA data buffers will overflow. The SAMPA readout controller will truncate the readout packets, balance the readout buffers and inform the DAQ in the data header that truncation occurred. In triggered operation a trigger could be issued during an active readout. In that case the reception of this trigger is acknowledged by sending a packet trailer and the data readout is extended by the number of programmable samples. Provided the interaction rate does not exceed specifications no data loss occurs. This feature also allows accommodation of the periodic heartbeat trigger in both triggered mode and continuous mode. After a heartbeat trigger the SAMPA needs to respond immediately with a header/trailer and optional status information. Optionally the data readout before the heartbeat trigger is continued or stopped. In any case there is no need to send a fast busy signal to the TPC. Too many triggers are indicated in the trailers. Too much data (too high occupancy or interaction rate) will fill the buffers and automatic truncation is communicated to the DAQ. Under nominal operation conditions the SAMPA will not get busy. However, in order to cope with unforeseen states where the SAMPA gets blocked, the CRU forwards status information to the CTP which throttles or stops the triggers. This transmission scheme is slower than a dedicated busy link from the front-end to the TPC but completely sufficient for this purpose.
5.5 Readout

In continuous mode, once data are acquired they are formatted and stored in a FIFO, where they wait to be sent to the 320 Mb/s serial e-links, which send them off the chip. There are 32 channels and 4 e-links of 320 Mbit/s. Each e-link is connected to 8 channels transmitting either non-DC balanced or 8b10b encoded data stream. The readout controller polls the data FIFOs and reads them out in a round robin based fashion. The size of the data FIFOs still needs to be defined. It shall be done as a trade-off between chip area and probability of truncated events on high occupancy periods.

The TPC application defines the maximum data band width. It is designed for a channel occupancy of 30 % and a sampling rate of 10 MHz. Given the 32 channels * a sampling rate of 10 MHz * a word length of 10 bit * 30 % occupancy, a data rate of 960 Mb/s per ASIC or 240 Mb/s per e-link needs to be accommodated. The 320 Mb/s e-links offer sufficient margin for transmission overhead. For pedestal runs, where the zero suppression is deactivated the readout is stopped when the buffers are full and restarted once they have been read out.

SAMPA operates with frame based readout. Once the readout starts, the header containing the bunch crossing counter, trigger origin and number of samples per event is sent. When the readout finishes a trailer containing the total number of 10-bit words on that event, data truncated and status information is sent. Also, a header-trailer pair is sent in order to tell the back-end electronics whenever the internal time stamping counter overflows and starts from zero.

When the SAMPA is operated together with the GBTx ASIC it receives a 40 MHz clock from the GBT. This clock signal is used to align the SAMPA word boundaries to the transmission phase of the GBTx. In order to adapt the number of e-link outputs to application data rate, the hit data can be routed through either all 4, 2 or 1 e-link, programmable via instruction. Furthermore data from neighbouring ASICs can be routed to the ASIC output (daisy chained readout) to further decrease number of output links in system. An additional e-link input is available for this purpose. In the MCH application this allows daisy chaining two SAMPA ASICs and the readout of one front-end card by one single e-link only. For test purposes of the detector system and the online computing system SAMPA allows to send pre-programmable data sequences. The SAMPA data flow block diagram is shown in Fig. 5.5.

5.6 ASIC I/Os

All the digital IO of the SAMPA ASIC are differential SLVS ports. The following list describes the SAMPA periphery:

Digital inputs:

- Digital clock: 320 MHz, a jitter of less than 30 ps RMS is expected.
- ADC reference clock: 10 MHz, optionally it can be produced from the digital clock. The phase of the ADC reference clock can be adapted to the GBT alignment clock.

- GBT alignment clock: 40 MHz, this signal allows alignment to the GBT transmission word phase.

- Reset global: resets all registers.

- Sync: This signal resets internal event counter and time stamp.

- Trigger: external trigger signal, synchronised to internal 40 MHz with programmable phase.

- e-link data input: allows merging data stream of neighboring ASIC.

- Address: 5 bit hard-coded address field which can be read via the configuration ports.

- High speed serial instruction input (8b10).

- Sensitivity control (gc0 and gc1): 2 pin (This value also can be programmed)

- Shaping time control (ptc0 and ptc1): 2 pin (This value also can be programmed)

Digital outputs:

- 4 e-link outputs: 320 Mbit/s data stream, programmable non-DC balanced or 8b10.

- Readout active signal:

- Full signal: is active, when buffers in the ASIC are full, data loss occurs and data readout is truncated.

- High speed serial instruction output (8b10).

Digital Input/Outputs:

- I2C interface.
5.7 Schedule, funding and institutes

<table>
<thead>
<tr>
<th>ptc0</th>
<th>ptc1</th>
<th>gc0</th>
<th>gc1</th>
<th>Shaping time</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>160ns</td>
<td>30mV/fC</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>160ns</td>
<td>20mV/fC</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80ns</td>
<td>30mV/fC</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>80ns</td>
<td>20mV/fC</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>300ns</td>
<td>4mV/fC</td>
</tr>
</tbody>
</table>

Table 5.2: Gain an shaping time programming options of the ASIC.

Analog inputs:

- 32 Detector inputs: 32 pins
- External bias resistances: 2 pins
- Reference voltages \(V_{REF-}, V_{REF+}: 2\) pins
- Common voltage \(V_{CM}\): 1 pin

The sensitivity and shaping time programming options of the ASIC are listed in Tab. 5.2.

5.7 Schedule, funding and institutes

The project schedule is presented in Fig. 5.6. Presently the project is in the design phase. The analog blocks are ready to start the layout phase.

Two prototyping runs (MPW: Multi-Project Wafer) will be performed:

1. The first run planned for November of 2013 will contain each block separately and a complete version of one channel (Preamplifier, Shaper, ADC and digital blocks). The test boards will be designed and implemented by Polytechnic School of the University of Sao Paulo or by the ALICE collaboration. The radiation tolerance test will be performance at Nuclear Physics Department of USP. More detailed tests will be conducted by the TPC and MCH Team.

2. The second run is planned for August 2014, which will contain the 32 channels, all integrated on one die. The purpose is to test the whole system, among them: power consumption, the noise and crosstalk performance.

The final chip is being planned to be produced in May of 2015.

In Tab. 5.3 SAMPA cost estimate is made. The estimate assumes prices for a similar technology, as TSMC prices available via the CERN frame contract are not yet available. The cost estimate is based on 2 multi project engineering runs (MPW), 2 full scale submissions, a final ASIC size of 65 mm\(^2\) and an ASIC yield of 60%. Using these numbers this estimate refers to a upper price limit. On one wafer a silicon area of 25200 mm\(^2\) (60
The project has the following funding sources:

1. Special program for integrated circuits fabrication of Brazilian Public Universities.
2. Regular project submitted in February 2013 to FAPESP with:
 - MPW (US$ 145K)
 - Test board fabrication
 - Scholarships
 - Two Trips to CERN
 - Publications
3. FAPESP project will be submitted for the Engineering Fabrication Run

Production funding options:
Table 5.3: SAMPA cost estimate.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPW</td>
<td>2 * 50 kUSD</td>
</tr>
<tr>
<td>Full scale submission</td>
<td>2 * 400 kUSD</td>
</tr>
<tr>
<td>Wafer production</td>
<td>875 kUSD</td>
</tr>
<tr>
<td>Total</td>
<td>1775 kUSD</td>
</tr>
<tr>
<td>Number of MCH + TPC SAMPA</td>
<td>52000</td>
</tr>
<tr>
<td>Price per ASIC out of 52000</td>
<td>34 USD</td>
</tr>
<tr>
<td>Packaging & testing per ASIC</td>
<td>10 USD</td>
</tr>
<tr>
<td>Price per packaged and tested ASIC incl. 10 % spares</td>
<td>44 USD</td>
</tr>
<tr>
<td>Price per packaged and tested ASIC incl. 10 % spares</td>
<td>40 CHF</td>
</tr>
</tbody>
</table>

- FAPESP agency: Sao Paulo research foundation (state level).
- Ministry of Science, Technology and Innovation (federal level).
- University of Sao Paulo.
- CNPq agency: National Counsel of Technological and Scientific Development (federal level).

Table 5.4 shows the involved institutes.

Table 5.4: SAMPA institutes.

Institutes

EPUSP, Escola Politécnica, Universidade de São Paulo, Brazil
IFUSP, Instituto de Física, Universidade de São Paulo, Brazil
University of Bergen, Norway
IPNO, Institut de Physique Nucléaire d’Orsay, Université de Paris-Sud, IN2P3/CNRS, France
SPhN, Service de Physique Nuclaire, CEA-IRFU Saclay, France
Chapter 6

Muon tracking CHambers - MCH

6.1 Introduction

The muon chambers (MCH) consist of 156 multi-wire proportional chambers with more than one million electronics channels. In order to support the interaction rate of 50 kHz, the design readout rate has been set to 100 kHz as safety margin. Approximately 34000 front-end ASICs and 17000 front-end cards need to be replaced and are connected via \(\approx 500 \) GBT optical links to the common readout (CRU). The front-end readout uses the SAMPA ASIC, which supports triggered and continuous readout.

6.2 The present system

The muon chambers are based on multi-wire proportional chambers with cathode pad readout, the so called Cathode Pad Chambers. The system consists of 5 tracking stations, each station composed of 2 chambers. Because of the different sizes of the stations, (ranging from few square metres for station 1 to more than 30 \(\text{m}^2 \) for station 5) two different designs were adopted. The first two stations are based on a quadrant structure \([31]\), with the readout electronics distributed on their surface (see Fig. 6.1 (Left)). Four independent quadrants constitute one chamber. For the bigger stations, a slat architecture \([32]\) was chosen (see Fig. 6.1 (Right)). The maximum active size of a slat is \(40 \times 240 \, \text{cm}^2 \) and the electronics is implemented on the top and bottom part of each slat. Slats are mounted on a frame support to constitute one half-chamber. One half-chamber consists of 9 slats for station 3, and 13 slats for station 4 and 5. The total number of detectors is 156, 140 slats and 16 quadrants. The slats and also the quadrants overlap to avoid dead zones on the detector. The tracking system covers a total area of about 100 \(\text{m}^2 \).

The present electronics contains the front-end electronics and the readout system, CROCUS (Cluster Read Out Concentrator Unit System), which concentrates the data signals
from the front-end electronics (FEE) and sends them to the Data Acquisition System (DAQ) on optical fibers and to the interface with the ALICE Central Trigger Processor. Data, control and trigger signals are transmitted on buses buried in the detector PCBs and on ribbon cables between the detector and the CROCUS. Translator boards located on the external edges of the detectors make the link between buses and ribbon cables to adapt the signal levels and allow an easy connection/disconnection of the detectors.

6.3 Muon system upgrade

In order to achieve a design readout rate of 100 kHz an architecture has been adopted where the signals are continuously sampled. The dead time free data readout supports a continuous, self-triggered readout mode and triggered mode. The data flow will be reduced by the online computing system and then sent to the offline system.

The muon chamber electronics upgrade architecture employs ALICE common electronics developments, the front-end ASIC, SAMPA used by MCH and TPC (see chapter 5) and the common readout unit (CRU). Programmable parameters in the SAMPA allow to take specification differences between the two systems into account. The Common Readout Unit (CRU) will replace the CROCUS boards to concentrate the data before transmitting them to the DAQ. The data transmission between FEE and CRU is based on optical GBT links.

6.3.1 Front-end electronics

The FEE parameters are defined by the following specifications:

- The detector implementation will not be modified. Therefore the location, physical layout and connections to the chambers of the 64 channel FEE boards will be unchanged.

Figure 6.1: Left: Layout of station 2 of the muon chambers; the readout electronics is distributed on the surface of a quadrant. Right: Layout of stations 4 and 5 of the muon chamber system; the readout electronics is distributed on the top and bottom edge of the slats.
6.3 Muon system upgrade

- The chambers will be operated with the present gas and HV parameters (gain: \(\simeq 2 \times 10^4 \), good charge spread).
- The spatial resolution is better than 100 \(\mu \)m, which corresponds to a required charge resolution at the percent level.
- The maximum input signal will be 500 fC and the gain \(\simeq 4 \) mV/fC, considering an 2 V effective ADC range.
- The cooling system remains unchanged allowing no significant increase in power consumption (\(\simeq 13 \) mW/ch).

For the expected signal distribution, the dependence of the charge and spatial resolution on shaping time, sampling frequency, ADC resolution and noise has been studied. Shaping times of 160 ns, as for the TPC application and 300 ns, have been considered. Three sampling frequencies, 10, 25 and 40 MHz and three different ADC resolutions with 10, 11 and 12 bit respectively have been evaluated [33]. In order to avoid resolution degradation due to the suppression of ADC samples before/after each trigger, when the signal has not yet/already exceeded/crossed the threshold, the SAMPA ASICs allow transmission of a programmable number of pre and post trigger samples.

The parameters for the MCH have been found to be as follows:

- 10 bit ADC resolution,
- 10 MHz sampling rate,
- shaping time of 330 ns,
- noise below 2000 electrons (large pads), 1000 electrons (small pads).

6.3.2 Readout electronics

The muon chambers have 17000 FEE boards with two 32-channel SAMPA ASICs each connected to GBT readout boards. Physically two different types of FEE cards are used for the quadrants and the slats. This configuration is illustrated in Fig. 6.2.

The SAMPA output data rate is sufficiently low that the data traffic is routed through only one single SAMPA e-link [34] operating at 80 Mbit/s. One of the two SAMPA readout ASICs on the FEE card sends its data readout stream to the other SAMPA on the FEE card. This SAMPA multiplexes the data stream of its neighbour with its own data stream. That way each FEE card has only one single e-link as output.

The data transmission from the FEE cards to the CRU in the counting room is done via bi-directional GBT links. Each FEE e-link is connected to one out of 40 GBT e-link inputs. These e-links carry the detector data and trigger/timing information. The
maximum distance is 2.5 m which is a comfortable distance for the 80 Mbit/s e-links. The GBT link chip set is a common LHC development and contains the GBTx ASIC, SCA ASIC and the optical transceiver module VTRx [35]. The GBTx transmits detector data and receives timing and trigger data via the VTRx optical transceiver. The slow control adapter ASIC (SCA) is directly connected to the GBTx and allows communication via I2C to the SAMPA ASICs and allows the measurement of supply voltages.

As the trigger latency for the MCH is not critical, the CTP sends trigger and timing information via the trigger and timing distribution system (TDS) to the counting room. There it is distributed to the CRU and forwarded to the FEE cards via the bi-directional GBT links. The CRUs are connected to the DAQ via the DDL3 interfaces, send the detector data to the first level processors (FLP) and receive DCS information via the FLPs from the ALICE DCS which is merged with the trigger information into the GBT link. In total 500 GBT based transceiver cards and links are required.

The muon chamber electronics will support readout upon a trigger signal at interaction rate as well as a trigger-less, continuous readout designed for an maximum interaction rate of 100 kHz. The external trigger signals include the interaction trigger, software trigger for pedestal and calibration (100 Hz) and commission triggers.

6.3.3 Data rate and format

In addition to the raw data output of the acquired ADC samples, the MCH applies a compression directly performed by the SAMPA where the charge and a time stamp is read out only. A simple sum of sampling values including a programmable number of pre- and post samples is foreseen. Nominally 1 pre-sample and 1 post sample is considered.

For data bandwidth considerations, an occupancy of 9% and an interaction rate of 100 kHz is assumed. The considerations for the data word length assume a maximum pulse width over threshold with 300 ns shaping time of 1000 ns corresponding to 10 samples over threshold at 10 MHz sampling rate. 64 bit data words have been considered for one channel in the charge output mode, whereas 140 bit for the raw mode are assumed (header/trailer with time stamp and channel address: (20 bit) + 10 + 1 pre + 1 post ADC samples (120 bit)). The system needs to be designed for the higher data rate of these two modes. As a result each FEE channel e-link carries in average a data amount of \(\approx 80 \text{ Mb/s} \) considering 9 % occupancy * 100 kHz interaction rate * 140 bit word length * 64 channels. It should be noted that the application of 100 kHz readout rate compared to the 50 kHz interaction rate already implies a factor 2 safety. In total the MCH system is designed for a maximum data rate of 1600 Gb/s (9 % occupancy, raw data sample readout, 100 kHz trigger rate).

6.4 Schedule, funding and institutes

The cost estimation of the muon chamber electronics upgrade is given in Tab. 6.1.
The involved institutes are are shown in table 6.2. For the common developments (CRU & SAMPA) cost sharing with the involved institutes is anticipated. The FEE boards and GBT boards will be taken in charge, both technically and financially, by the muon laboratories: Orsay (IN2P3) will design and produce the FEE boards. Cagliari (INFN) and IRFU (CEA Saclay) will design and build the links/cables and GBT boards.

Common parts will be taken in charge partly by muon laboratories and the involved laboratories: Budapest and India groups are responsible for the CRU design and production; the financing will involve these two groups but also the muon chamber laboratories. The design and the production of the FEE chip, SAMPA, is coordinated by the Brazilian team, which will be the main contributor; IRFU is involved in the FEE chip design.

Table 6.3 shows the schedule for upgrade development items.
Table 6.1: Cost estimation for the muon chamber electronics upgrade, including 10% of spare (CORE cost only)

<table>
<thead>
<tr>
<th>Item</th>
<th>#</th>
<th>Price [CHF]</th>
<th>Total cost [kCHF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPA</td>
<td>38000</td>
<td>37</td>
<td>1406</td>
</tr>
<tr>
<td>FEE board (PCB+passive comp.)</td>
<td>19000</td>
<td>32</td>
<td>608</td>
</tr>
<tr>
<td>FE2GBT cable</td>
<td>19000</td>
<td>15</td>
<td>285</td>
</tr>
<tr>
<td>FE2GBT card (PCB+passive comp.)</td>
<td>500</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>VTRx</td>
<td>500</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>GBTx</td>
<td>500</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>SCA</td>
<td>500</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>FE-link (passive)</td>
<td>500</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>CRU (# of inputs)</td>
<td>500</td>
<td>316</td>
<td>158</td>
</tr>
<tr>
<td>trigger distribution</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2852</td>
</tr>
</tbody>
</table>

Institutes

- INFN and Università degli Studi di Cagliari, Italy
- IPNO, Institut de Physique Nuclaire d’Orsay, Université de Paris-Sud, IN2P3/CNRS, France
- SPhN, Service de Physique Nucléaire, CEA-IRFU Saclay, France
- UNICAMP, Universidade Estadual de Campinas, Brazil
- IFUSP, Instituto de Física, Universidade de São Paulo, Brazil
- EPUSP, Escola Politécnica, Universidade de São Paulo, Brazil
- Wigner Research Centre for Physics, Institute for Particle Nuclear Physics, Hungary
- VECC, Variable Energy Cyclotron Center, Department of Atomic Energy, Kolkata, India
- SAHA Institute of Nuclear Physics, Kolkata, India

Table 6.2: MCH institutes.

Table 6.3: MCH Time schedule.

<table>
<thead>
<tr>
<th>Item</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEE board</td>
<td>2014</td>
</tr>
<tr>
<td>FE2GBT cable</td>
<td>2014</td>
</tr>
<tr>
<td>FE2GBT card</td>
<td>2014</td>
</tr>
<tr>
<td>system test</td>
<td>2016</td>
</tr>
<tr>
<td>system installation</td>
<td>2017</td>
</tr>
</tbody>
</table>

Table 6.3: MCH Time schedule.
7 Muon Identifier - MID

Chapter 7

Muon Identifier - MID

7.1 Overview

The Muon Identifier (MID) is the proposed future designation, after LS2, of the present Muon Trigger system [2]. This choice will be justified in what follows. It is briefly recalled that the Muon Trigger detector is composed of 4 planes of single gap Resistive Plate Chamber (RPC) detectors, organized in two stations of two planes located at 16 m and 17 m from the interaction point. The planes in the same station are 17 cm apart. The total detection area is about 150 m². The RPC signals are collected by means of a total of 21000 strips and the same number of Very Front-End (VFE) electronics channels. The signals from the VFE electronics are propagated to the Front-End (FE, essentially in charge of taking the muon trigger decision) and readout electronics.

The VFE electronics is located on the RPC detectors and its upgrade has been already discussed in the Letter of Intent (LoI) for the ALICE upgrade [1]. The main motivation is to prevent ageing of the RPCs. The present VFE chip called ADULT [36] will be replaced by a new ASIC, FEERIC. Unlike ADULT, FEERIC will perform amplification of the analog signals from the RPCs. The RPCs will be operated in “genuine” avalanche mode (like in ATLAS [37] and CMS [38]) with a significant reduction of the charge produced in the gas, hence limiting ageing effects.

In the LoI, it was proposed to preserve the muon trigger decision functionalities and to read out the muon spectrometer upon a muon trigger with a rate that is typically one order of magnitude smaller than the PbPb minimum bias interaction rate. Specifically, it was proposed to keep the FE (so-called local) cards and only upgrade the readout electronics. The local cards presently receive the signals from the VFE and deliver the first stage of the muon trigger decision. It was however identified that the future L0 trigger latency requirement might be difficult to fulfil.

Subsequently to the LoI, it has been decided to change this strategy and read out the muon spectrometer for each minimum bias trigger with the goal of maximizing its physics potential. This implies some changes in the upgrade strategy because:
The readout rate will be more than one order of magnitude larger compared to the initial design;

- there is no need for fast, hardware based, p_T dependent muon trigger signals.

As a consequence the entire FE and readout electronics must be replaced in order to cope with the given readout rates. Since the muon trigger functionalities are abandoned, a simplified design can be implemented. The detector, separated from the Muon Tracking system by an iron wall of 1.2 m thickness, will however keep its crucial role as muon identifier which motivates the change of name to MID. Indeed, the hadron contamination in the Muon Spectrometer, for matched tracks with the ones in the MID, is dramatically cleaned [39, 40] and all present data analyses request this matching condition. Finally, the MID should help to reduce pile-up effects in the Muon Spectrometer when track matching is requested thanks to its excellent timing properties allowing the separation of two tracks belonging to two adjacent 40 MHz bunch crossing cycles.

In conclusion the upgrades MID system during LS2 consists in:

- Replacement of the VFE electronics;
- Replacement of all FE and readout electronics.

There is no indication for a need of a major upgrade of the RPC detectors and gas system and only some maintenance operations are expected.

7.2 Very Front-End electronics upgrade

The expected counting rates of the RPC detectors are given in Tab. 7.1 for pp and PbPb. These values are extrapolated from the present measurements [41]. The counting rate in pp does not account for the beam induced background which can be quite large.

It can be seen from Tab. 7.1 that the counting rate of the RPC could exceed 100 hits/s/cm2 in PbPb collisions. As discussed in [1], in the current operating mode of the RPCs, without amplification in the VFE, the mean total charge is of the order of 100 pC per hit. In these conditions the R&D results [42] on efficiency set an instantaneous counting rate limit below 50 hits/s/cm2, including some safety margins in case of short running periods. Another limitation comes from RPC aging: from our R&D [42], safe operation of the detectors cannot be guaranteed for a cumulated dose larger than 50 mC/cm2 (500 Mhits/cm2 in the present mode of operation).

The total particle fluence numbers for the upgrade physics program and safety factors discussed in Chap. 3 would result in a charge deposit of more than 100 mC/cm2 for the

<table>
<thead>
<tr>
<th>200 kHz pp $\sqrt{s} = 14$ TeV</th>
<th>100 kHz PbPb $\sqrt{s}_{NN} = 5.5$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (mean) - 15 (peak) hits/s/cm2</td>
<td>75 (mean) - 125 (peak) hits/s/cm2</td>
</tr>
</tbody>
</table>

Table 7.1: Expected counting rates of the RPCs.
most exposed RPCs. Keeping in mind that the RPCs will have accumulated already
an significant dose before LS2, these arguments strongly favour operating the RPCs in
“genuine avalanche” mode, with a reduced charge per hit. Based on e.g. ATLAS results
[43], a reduction by a factor $3 - 5$ for the charge per hit can be achieved, which requires
the mentioned change of the VFE electronics.

A R&D program has been launched in order to evaluate the actual performance of the
MID RPCs equipped with the new VFE electronics and is described as follows:

- measurement of the channel noise for the RPC installed in the cavern, which gave
 values in the range of $25 - 50$ fC depending on strip size and position.
- realization of a VFE card prototype called BARI-FE (Fig. 7.1) with the CMS RPCs
 ASIC[44];
- measurements of the RPC performance (efficiency curves, time resolution, cluster
 size) with BARI-FE prototypes on the Torino RPC production test bench [45];
- design of the FERRIC ASIC.

![VFE card with the first prototype of the FEERIC ASIC.](image)

The efficiency curves for RPCs equipped with BARI-FE cards (for threshold values of
200 mV and 250 mV) and ADULT cards (with 7 mV threshold without signal amplification)
are compared in Fig. 7.2.

As expected, It can be seen that the voltage at the efficiency knee is shifted towards
lower values, by several hundreds of volts with BARI-FE. As a direct consequence, the
charge at operating voltage is lower. From test bench measurements, it is difficult to
evaluate the charge per hit achievable in cavern at operating voltage which depends in
turns on the threshold value hence on the noise level. For this reason we foresee to
equip before the end of the LS1 one of the ALICE RPC in cavern with a FEERIC VFE
card pre-production (typically 50 cards of 8 channels each) in order to quantify accurately,
on a long time scale, the achievable RPC performance in realistic conditions. The VFE
production would follow, for a final installation scheduled during the LS2. The possibility
of using the I2C bus for threshold remote control is considered.

As there is no available ASIC fulfilling all MID requirements the design of the FEERIC
ASIC has been carried out. The CMS RPC ASIC is the closest to the needs but it is
designed for negative signals only while the MID is readout on both sides of the RPC
plane and thus requires positive and negative signal processing. The block diagram of the FEERIC is shown in Fig. 7.3. It includes a two stage transimpedance amplifier with $\approx 0.1 \, \Omega$ input impedance, a zero-crossing discriminator, a one-shot preventing from re-triggering during 100 ns and LVDS drivers.

![Block diagram of the FEERIC ASIC](image)

Figure 7.3: Block diagram of the FEERIC ASIC

The main specifications, requirements and simulated performance of the FEERIC ASIC are summarized in Tab. 7.2. The operating range is expected to be above a threshold of typically 100 fC.

The first prototype of the FEERIC ASIC has been delivered at LPC Clermont-Ferrand in September 2013. Qualification tests are ongoing: preliminary measurements (Tab. 7.2) show that this first version of the ASIC is fully operational. A second submission will be launched by early 2014 to optimize the ASIC performance while fine tuning its layout. The FEERIC VFE card pre-production will be built using the ASIC from this submission.
Table 7.2: Main specifications, requirements and simulated performance (central column) of the FEERIC ASIC; Measured performance (right column, preliminary) of the first prototype of the FEERIC VFE card

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FEERIC ASIC specs, reqs and simulated performance</th>
<th>FEERIC VFE card prototype performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIC technology</td>
<td>0.35 μm CMOS</td>
<td>x</td>
</tr>
<tr>
<td>Number of ch.</td>
<td>8</td>
<td>x</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>Q = 20 fC - 3 pC</td>
<td>x</td>
</tr>
<tr>
<td>Noise level</td>
<td>< 2 fC (r.m.s.)</td>
<td>25 fC (noise limit)</td>
</tr>
<tr>
<td>Power cons.</td>
<td>70 mW/ch</td>
<td>60 mW/ch</td>
</tr>
<tr>
<td></td>
<td>Req. < 100 mW/ch</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>3 V</td>
<td>x</td>
</tr>
<tr>
<td>Input polarity</td>
<td>+/-</td>
<td>x</td>
</tr>
<tr>
<td>Amplification</td>
<td>0.4 mV/fC</td>
<td>0.33 mV/fC</td>
</tr>
<tr>
<td>One shot</td>
<td>yes (100 ns)</td>
<td>x</td>
</tr>
<tr>
<td>Discriminator</td>
<td>zero crossing</td>
<td>x</td>
</tr>
<tr>
<td>Time resolution r.m.s.</td>
<td>< 200 ps</td>
<td>< 500 ps</td>
</tr>
<tr>
<td>for $Q > 100$ fC</td>
<td>Req. < 1 ns</td>
<td></td>
</tr>
<tr>
<td>Time walk</td>
<td>600 ps</td>
<td>900 ps</td>
</tr>
<tr>
<td>for $100 < Q < 3000$ fC</td>
<td>Req. < 2 ns</td>
<td></td>
</tr>
<tr>
<td>Output signal format</td>
<td>LVDS, 23 ± 2 ns</td>
<td>x</td>
</tr>
</tbody>
</table>

7.3 Front-end and readout electronics upgrade

The present MID is divided into 16 vertical regions. Each of the 16 regional areas is read out by 1 out of 16 VME crates. Each crate contains one regional card multiplexing the data from up to 16 local cards. Each local card is connected to 128 VFE channels via eight cables with each 34 wires from four detector planes and the two orthogonal coordinates. In total 234 local cards are used. The system is located on the upper gangways at the C-side where the radiation level is low. For the upgrade this segmentation will be maintained.

Figure 7.4 shows the upgraded MID system architecture. In order to increase the readout rate to 100 kHz both the local and regional readout cards will be re-designed. The hardware implementation of the regional and local card will be identical, reducing the design and production effort by re-using the same hardware and adapting the FPGA firmware.

The local card receives the binary chamber signals via LVDS signals indicating whether the corresponding channel has been hit for each bunch crossing. The FPGA in the local card performs the following functions:

- it applies a remotely configurable noisy channel mask;
- compensates the different transmission delays (max.: 35 ns, per steps of 2.5 ns) from cables of different lengths coming from the VFE;
Figure 7.4: FE and readout electronics architecture

<table>
<thead>
<tr>
<th>Component</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFE cards/channels</td>
<td>2384/20992</td>
</tr>
<tr>
<td>Local cards</td>
<td>234</td>
</tr>
<tr>
<td>Regional cards</td>
<td>16</td>
</tr>
<tr>
<td>CRU AMC cards</td>
<td>1</td>
</tr>
<tr>
<td>e-links</td>
<td>234</td>
</tr>
<tr>
<td>GBT (bi-directional)</td>
<td>16</td>
</tr>
<tr>
<td>DDL3</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 7.3: Total number of MID cards and links

- calculates a Loc-trk signal for each bunch crossing corresponding to a track crossing in any of the two detector stations;
- provides 16-bit counters for monitoring the detector counting rate;
- zero-suppresses the input data;
- provides a multi-event buffer;
- and provides a trigger, clock, control and data interface to the regional card using one 320 Mbit/s serial bi-directional connection;

As the MID in not latency critical the trigger and timing interface (TTS) based on GBT links.
connects the MID via the LTUs and the CRU in the counting room. From there the CRU forwards the trigger and timing information via the GBT front-end links to the regional and local cards.

The adopted architecture, has the advantage of limiting the number of high speed GBT links thanks to the regional interface between the local cards and the CRU. The cost of the project is consequently reduced.

Events are stored in the local card multi-event buffer at each trigger. The range of the acceptable trigger latency is 0.5-9.6 μs. The multi-event buffer in the local card is larger than the size of one software event (registered at very low rate) which includes, in addition to the standard physics event information, the counters. The maximum size of a software event, obtained in case of calibration events with the front-end test (FET) generator for which zero suppression is not efficient, because all strips are fired, is 50 words of 32 bits. It corresponds to a depth of 10 physics events (maximum 5 words of 32 bits).

The implementation of 2 GBTs per local/regional card leaves the option of a complete VFE data transfer (5.12 Gbit/s), at 40 MHz without zero suppression, from the local cards directly to the CRUs (typically one CRU per regional area in this case). This solution corresponds to a continuous readout, however, with an increased cost due to the higher number of optical GBT links to the CRUs.

The expected data flow in pp and PbPb is given in Tab. 7.4. It includes a preliminary evaluation of event separators and headers which contribute significantly to the event size. The total data flow in PbPb at 100 kHz amounts to 300 MB/s. The readout dead time is expected to be negligible with a single DDL3 link at 10 Gbit/s. Anyhow a busy mechanism will be implemented.
7.4 Schedule, funding and institutes

The involved institutes are:

- Sezione INFN and Dipartimento dell’Università di Torino, Italy
- Konkuk University, Seoul, Republic of Korea
- Subatech, Ecole des Mines et Université de Nantes, France IN2P3/CNRS
- Laboratoire de Physique Corpusculaire, Université Blaise Pascal de Clermont-Ferrand, France IN2P3/CNRS

Table 7.5 shows funding and schedule with a start of local/regional card prototyping during LS1, CRU interfacing and local/regional card production in 2015–2016 and installation and commissioning during LS2.
Chapter 8

Transition Radiation Detector - TRD

8.1 TRD upgrade strategy

The Transition Radiation Detector (TRD) has originally been designed for a Pb-Pb interaction rate of 8 kHz and for a significant event rejection from the level 1 (L1) trigger [46]. The existing processing and readout of the front-end electronics (FEE) as well as the readout and trigger functionality are optimized for these conditions and to provide a fast L1 trigger contribution, implementing jet and electron triggers.

For the ALICE upgrade, the TRD detector must operate at much higher interaction rates, and the FEE and readout system must accept the largest possible fraction of interactions without the need to provide a trigger.

Based on measurements in Pb-Pb collisions in Run 1, it has been estimated that the chamber currents reach 6 µA at 50 kHz interaction rate. This leads to a total accumulated charge of 0.8 mC per cm of wire per year, assuming an average interaction rate of 50 kHz. As the chambers were validated for charges above 10 mC/cm, it is expected that no ageing effect will occur for the planned running time. The voltage drop at these currents however may result in significant gain variations in case of large variations of interaction rate, e.g. over the duration of a fill. No problems on detector stability or concerning space charge effects are expected.

An upgrade of the FEE hardware is not realistically feasible. Besides the design and production effort, it would require a complete disassembly and rebuild of the 18 TRD supermodules and the FEE mounted on the 522 individual detector chambers. The chosen strategy is a reduction of event readout time with the existing FEE by changing its mode of operation and limiting the amount of event data read from the FEE as detailed in Sec. 8.2. The impact on performance for tracking and electron identification has been extensively studied (see Sec. 8.3) to validate the proposed strategy.
The readout of the optimized FEE data format at the full minimum bias event rate requires new hardware with increased bandwidth to the DAQ system as described in Sec. 8.4. The use of the proposed ALICE Common Read-Out Unit is envisaged for this purpose.

8.2 Frontend operation and readout

8.2.1 Current FEE readout

In contrast to the continuous readout strategy of other ALICE detectors, the TRD FEE [47] is bound to operate in a triggered mode of single event readout. An initial trigger level (LM - Level Minus one; the functionality corresponds to the “pretrigger” in Run 1) fixes the time reference for sampling and processing. A subsequent event can only be triggered on after completion of the FEE event readout or of the abort sequence after a negative higher level trigger.

The front-end electronics comprises a hardware preprocessor for the calculation of quantities relevant for the finding of online tracklets, which are track segments in a single detector chamber. The preprocessor provides its results at a fixed time after the sampling has been started by a LM trigger. Further processing is done in CPUs in the FEE.

Fig. 8.1 shows the timing sequence for a typical event. To recover the information before the arrival of the LM trigger, the digitized data are delayed in pipeline stages. With a drift time of $2.2 \, \mu s$ and a delay of $900 \, ns$ the processing in the CPUs can start $3.1 \, \mu s$ after the interaction when all data have passed through the preprocessor and its results are available. The processing time depends on the complexity of the calculations, finding tracklets using the preprocessor results takes about $1 \, \mu s$.

The FEE readout is organized in 60 trees (2 per chamber) per supermodule, each with 64 FEE devices (multi chip module - MCM) and equipped with one optical readout interface (ORI). The readout can operate in two modes, tracklet mode and raw readout mode. The tracklet mode is implemented as pure push mechanism up the readout tree without any handshaking. This avoids latency but is limited to the readout of 4 32-bit words for each MCM. The raw readout mode has no practical limitation on the number of transmitted words but requires handshaking, which results in a total overhead of $8.32 \, \mu s$ per readout tree in addition to the time for the actual data transfer with 8 bit at $120 \, MHz$.

![Figure 8.1: FEE event processing and readout sequence as used in Run 1. The event readout timing is shown for an event with 25% of tracklet words.]

\[t(\mu s) \]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14 \quad 16 \quad 18 \]

interaction
pretrigger
drift
processing
tracklet mode
raw readout mode

Figure 8.1: FEE event processing and readout sequence as used in Run 1. The event readout timing is shown for an event with 25% of tracklet words.
The event readout time, i.e. the time from an interaction until the FEE has finished shipping all data, depends on the FEE processing effort and the maximal data volume in a single readout tree. With the raw readout mode, the event readout time will be of about 16 μs in addition to the transfer time for the actual data volume of a given event. The currently used readout of full zero-suppressed ADC data results in event readout times of several 10 μs and puts a severe limit on the maximum readout rate.

8.2.2 Readout with modified data formats

New data formats can be implemented within the capabilities of the existing FEE hardware, with the goal to minimize dead time by a reduction of data volume. Two different approaches have been investigated:

- **Tracklet Readout**

 A significant readout time reduction can only be achieved by avoiding the handshaking overhead in the raw readout mode and by transferring information exclusively via the four data words associated to each MCM.

 In this mode the event readout time is in the range of 4 μs up to around 8 μs limited by the maximum number of words available in this readout mode.

 The most stringent constraint is the limitation to 4 32-bit words (128 bits) per MCM which limits the acceptable local occupancy. Currently, in the tracklet mode one MCM can send up to four tracklet words, each with the following information: z-position (longitudinal) in units of padrow (4 bits), y-position (transverse) in units of 160 μm (13 bits), y-deflection (transverse) in units of 140 μm (7 bits) and PID information (8 bits).

 In order to extend the charge information used for PID, the readout of 3 tracklets with 18 bits for PID information, or 2 tracklets with 40 bits for PID is foreseen. The bin widths for the positions would remain unchanged. Two charge slices are available directly from the preprocessor without additional delay, more slices could be calculated in the CPUs by looping over the data in the event buffers.

- **Partial Data Readout**

 Another option to reduce the amount of data is a partial raw data readout in the raw readout mode. The readout can be restricted without information loss to regions where TRD information is relevant, i.e. only ADC data belonging to tracklets which fulfill a simple criterion for electron candidates. The selection of regions for readout has to be implemented within a MCM, based on a simple criterion optimized for data reduction and not necessarily for purity. A data volume reduction by a factor 5 can be achieved; more studies are needed especially to evaluate the effect on track propagation from the inner detectors.

Running with alternative data formats requires only a change of FEE configuration. Therefore new formats can be tested and optimized with real data throughout Run 2 without
major disturbance for normal data taking. Depending on the rate requirements, either tracklet readout or partial data readout could be used in different running periods.

Front-end read-out rates with new data formats

The readout rate performance of the new data formats is shown in Tab. 8.1 for the case of Pb-Pb collisions which constitute the biggest challenge for the readout given the large event sizes at comparably high interaction rates of 50 kHz or above.

Cases for the tracklet readout are shown for the maximum event readout time of 8 μs and another more typical value of 6 μs. Accepted event rates in the range of 60 kHz can be achieved for 100 kHz interaction rate, which is significantly higher than the accepted rates for any data format using the raw readout mode of the FEE.

In all readout scenarios with reduced or tracklet data the data volume is below 14 Gb/s/sector.

<table>
<thead>
<tr>
<th>interaction rate [kHz]</th>
<th>Accepted rate [kHz]</th>
<th>Accepted fraction [%]</th>
<th>deadtime [%]</th>
<th>data volume [Gb/s/sector]</th>
</tr>
</thead>
<tbody>
<tr>
<td>tracklet readout only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avg. deadtime 6 μs</td>
<td>50</td>
<td>38.5</td>
<td>76.9</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>62.5</td>
<td>62.5</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>90.9</td>
<td>45.5</td>
<td>54.5</td>
</tr>
<tr>
<td>avg. deadtime 8 μs</td>
<td>50</td>
<td>35.7</td>
<td>71.4</td>
<td>28.6</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>55.6</td>
<td>55.6</td>
<td>44.4</td>
</tr>
<tr>
<td>partial raw data readout</td>
<td>50</td>
<td>23.3</td>
<td>46.5</td>
<td>53.5</td>
</tr>
<tr>
<td>full zero-suppressed ADC data</td>
<td>50</td>
<td>16.6</td>
<td>33.2</td>
<td>66.7</td>
</tr>
</tbody>
</table>

Table 8.1: TRD readout rates and data volume for different TRD data formats and event scenarios.

For the given readout rates and data volumes, a Pb-Pb minimum bias raw event size of 210 kB/sector (28.3 kb/event/link) is assumed, derived from the experimental value of 170 kB/sector (2011 Pb-Pb data at $\sqrt{s_{NN}} = 2.76$ TeV) and scaled to $\sqrt{s_{NN}} = 5.5$ TeV.

For the tracklet event size, occupancies of 25% (6 μs case) and 50% of the maximum number of tracklet words (8 μs case) are assumed. For the partial raw data readout, a factor 5 of data reduction with respect to the full zero-suppressed ADC data is assumed. The numbers of accepted events are estimated based on FEE readout time and interaction rate only.

Possible rate limits coming from the increased power consumption at the upgrade readout rates were investigated in test runs where tracklets were produced artificially by adjusting the FEE baseline and cluster thresholds. Only the digital 1.8 V low voltage channels, which are used for components in the FEE chip that are clocked exclusively during event processing, show a significant dependence on readout rate. Measured currents are below 150 A for all running scenarios up to 100 kHz readout rate, well below the 200 A current limit of the LV supplies.
The TRD currently calibrates gain, drift velocity \(v_d \), \(E \times B \) effects and time-offset; about 30000 \(pp \) or 1500 \(Pb-Pb \) minimum bias events are needed to achieve a calibration point. The existing calibration procedures can be preserved with the new data formats by reading the full zero-suppressed ADC data instead of the tracklet words for a small subset of events, with negligible effects on deadtime and data volume. It is also conceivable that calibration could exclusively use tracklet words, doing gain calibration with the charge information available in the tracklet words and integrating other calibration parameters in a global alignment procedure.

As a conclusion the tracklet readout scenario would allow - with the existing FEE hardware - to read-out more than 70% of events at the envisaged \(Pb-Pb \) minimum-bias 50 KHz interaction rate including also the TRD detector. A study on the impact on tracking and particle identification performance of the new format is presented in the next section.

8.3 TRD Performance with new data formats

The performance for tracking and PID of the reduced information content of the tracklet readout scenario described above is assessed by comparing it to the performance of the offline reconstruction based on full zero-suppressed ADC data (ZS) (for details see [48]) and TPC seeding. Results from \(pp \) data at 8 TeV (production LHC12f) are presented for the two tracklet reconstruction scenarios:

- read-out tracklets obtained *online* as currently used for trigger purposes
- tracklets calculated *offline* from ZS data with an improved PID content.

Their matching was done with respect to corresponding global tracks by their azimuthal and polar positions at the radial distance of the anode wire of the corresponding TRD chamber. The offline residual misalignment is applied in both cases.

The tracklet reconstruction efficiency for online relative to offline scenarios is presented in Fig. 8.2 (left) for a single \(pp \) run. Due to systematic effects induced by drift being perpendicular to magnetic field deflection \((E \times B) \) effects) positive and negative charged particles are influenced differently. They are therefore shown separately in order to assess the \(p_T \sim 1.5 \text{ GeV}/c \) threshold above which reconstruction is not affected by particle charge. From Fig. 8.2 (left) we conclude that the TRD contribution to global tracks should remain unchanged within 4% when using the tracklet read-out format.

The quality of TRD reconstruction for track position in the azimuthal plane with respect to global tracks is presented in Fig. 8.2. The residuals \(\Delta y \), obtained chamber-wise, are characterized by Gaussian shapes with comparable sigmas, *i.e.* resolutions (Fig. 8.2 right) for both tracklet reconstruction scenarios. The TRD tracking performance remains unchanged for positive particles above \(p_T \sim 1.5 \text{ GeV}/c \) and for negative particles above \(p_T \sim 0.8 \text{ GeV}/c \).

The online tracklet performance at low \(p_T \) develops asymmetrically with particle charge due to the missing correction for the ion tails (Tail Cancellation - TC).
Figure 8.2: TRD reconstruction performance relevant for tracking. The reconstruction efficiency of online relative to offline (left) and the quality of azimuthal residuals (Δy) resolutions (right) for positive [red] and negative [blue] charged particles for the two tracklet reconstruction scenarios.

Characteristics relevant for particle identification of the estimation of the track angle, in a single TRD chamber, by the two tracklet scenario are presented in Fig. 8.3 (right). The Gaussian shaped residuals ($\Delta \phi$) are described by shifts with larger values obtained for the online tracklets are due mainly to missing TC corrections and also to limited calibration precision for drift velocity and $E \times B$ effects.

In the left panel of Fig. 8.3 the particle identification (PID) performance is compared for online reconstructed tracklets optimized for triggering and normalized to global track inclination and offline tracklets respectively. The pion efficiency at 75% electron efficiencies for the online scenario is projected on the much higher statistics offline data set using a
The identification of particle species is in this case done offline based on reconstructed secondary vertices (V_0 candidates) due to photon conversion, K_0 and Λ decays. It is worth to note that the TRD 1-dimensional PID is formed out of two ingredients, the total charge and the track inclination. For online tracklets PID and inclination (local momentum) can not be optimized simultaneously. Rather, PID can be best calculated after global tracking is performed using the good online position information. For the upgrade data without TRD electron trigger this poses no limitation.

8.4 TRD readout and trigger

8.4.1 TRD readout unit

In the following paragraphs the specifications for a new TRD readout unit are presented (see also Fig. 8.4). The major upgrade is the higher bandwidth interface to the DAQ: the full minimum bias triggered FEE data stream has to be transferred instead of the full zero-suppressed ADC data for a small subset of L1 accepted events, as in the GTU modules that currently implement the TRD readout functionality [49].

The expected data volume per sector is below 20 Gb/s (see Tab. 8.1). This translates into two readout units (RU) per TRD sector, each with one 10 Gb/s uplink to the DAQ first level processors (FLPs). The RU has 30 optical input links, each transferring data from the FEE of one TRD half chamber at a net data rate of 2 Gb/s. In case of tracklet readout, the data transfer from the FEE is active for less than 12% of the time for all scenarios shown in Tab. 8.1. Together with the 5 times higher bandwidth of the DAQ link, the 30:1 ratio of FEE input links and DAQ output link on one RU is adequate.
The RU must be able to handle different event types: (A) tracklet data (B) full zero-suppressed raw events for calibration, (C) partial raw data and (D) full non zero-suppressed events (not in physics runs). Tab. 8.2 shows event sizes and buffer requirements for typical cases of the various event types.

<table>
<thead>
<tr>
<th>Event type</th>
<th>data volume kB/event/sector</th>
<th>data volume kb/evt/input link</th>
<th>number of events in 512 kb link buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% tracklet words (A)</td>
<td>30.8</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>minimum bias raw (B)</td>
<td>200</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>central raw (B)</td>
<td>≈ 700</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>minimum bias partial (C)</td>
<td>40</td>
<td>5.4</td>
<td>95</td>
</tr>
<tr>
<td>non zero-suppressed raw (D)</td>
<td>≈ 3000</td>
<td>400</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 8.2: Event size and RU input buffer capacity for various event types.

The input buffers on each FEE link act as multi event buffer (MEB) for the readout. The FEE data transfer to the RU uses a pure push mechanism without handshake or BUSY. To avoid data loss during this transfer, the RU input buffer size and bandwidth have to be large enough to accept at least one event of maximum possible size simultaneously on all links. The largest possible event type, a non-zero suppressed raw event, requires a buffer size of 400 kb. This size allows the storage of a sufficient number of events for all event types in physics runs as shown in Tab. 8.2. With e.g. 512 kb link buffers, the single buffer can equally hold five central raw events or 64 events with maximum number of tracklets using a dynamic event buffer size.

For the interface to the DAQ there are no specific requirements from the TRD. Any chosen common ALICE DAQ link can be implemented for the TRD readout with the choice of a suitable FPGA device. The goal for the TRD readout is to use the ALICE common readout unit (CRU). The scheme of 30 FEE optical links inputs and 1 DDL output maps to one AMC40 card.

The CRUs for the TRD are ideally located in the counting room, allowing full accessibility during data taking. Alternatively, the CRUs can be installed in the current GTU racks in the C-area, re-using the existing fibers from the TRD supermodules to the GTU (1044 fibers) and from the GTU to the DAQ area. In the C-area the level of radiation is not a concern for the CRU. Besides the impact on cost for the extension of 1044 optical fibers to the counting room for the first option, the feasibility in terms of the optical power that can be driven by the FEE for the extended optical links and with the additional multi-fiber push-on (MPO) connectors (see Fig. 8.4) for both options has to be evaluated carefully.

8.4.2 Trigger and busy handling

For operating the TRD, trigger sequences need to be provided to the FEE and in parallel to the CRUs. The FEE mounted on the detector chambers will remain unchanged for the upgrade, employing a TTCrx device to receive and distribute trigger information to all FEE devices. Therefore a TTC system for trigger distribution is needed for the TRD. The FEE requires a special trigger sequence on the TTC A-channel, which is not compatible with
the standard TTC trigger sequence. It consists of individual pulses one bunch crossing
wide with a fixed timing for each provided trigger level. No TTC trigger messages are
used on the FEE, thus no rate limit is imposed by using the TTC at high rates for the
TRD.

For the TRD FEE, a single trigger level (LM) is sufficient to initiate the full processing and
readout sequence. The timing of the LM signal has to be identical to the current TRD
pretrigger with an arrival time at the FEE of, at the latest, 900 ns after the interaction
in order to record the full signal shape including the early amplification peak. The FEE
supports up to two additional trigger levels: a L0 or L1 trigger, which, in case of tracklet
readout mode, is faster than 4 µs can abort the FEE processing and thus reduce the dead
time for L0 or L1 rejected events.

The CRUs receive a full standard trigger sequence including trigger messages which are
used for BUSY generation and event formatting.

The CRU generates the TRD BUSY signal for the CTP. Each CRU asserts BUSY upon
arrival of an LM trigger and releases the BUSY as soon as event end-markers are re-
ceived on all FEE links or a time-out occurs. Moreover BUSY is asserted in case of full
buffers.

8.4.3 Schedule, funding and institutes

Table 8.4, 8.5 and 8.3 shows the TRD schedule, funding and institutes.

<table>
<thead>
<tr>
<th>Contributing Institutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Frankfurt, Germany</td>
</tr>
<tr>
<td>Gesellschaft für Schwerionenforschung, Darmstadt, Germany</td>
</tr>
<tr>
<td>University of Heidelberg, Germany</td>
</tr>
<tr>
<td>University of Münster, Germany</td>
</tr>
<tr>
<td>NIPNE Bucharest, Romania</td>
</tr>
<tr>
<td>Tokyo University, Japan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>New data formats</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Readout unit</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 8.3: TRD institutes.

Table 8.4: TRD schedule.
Funding

Readout unit	38 CRUs, fiber connectors, crate, trigger & busy distribution	420 kCHF (CRUs in C-racks) additional cost for fiber routing to counting room
Manpower	firmware and software development	
2015-16	1 FTE	
2017-19	2 FTE	

Resources for funding will be requested from BMBF

Table 8.5: TRD funding.
Chapter 9

Time Of Flight detector - TOF

9.1 Introduction

We discuss the implications of the increased interaction rate at ALICE after the upgrade and the new requirements for the readout for the TOF detector.

During run 1 the current of the MRPCs increased linearly (Fig. 9.1-left, taken from [50]) with the LHC luminosity: abnormal noise current was not observed. Taking into account the average track multiplicity and the ALICE interaction rate, the two horizontal axes were aligned to the same detector load (number of particles hitting the TOF). Considering again the interaction rate at ALICE and the TOF hit multiplicity per event we estimated the average rate of particles in the detector as a function of the total TOF current. This is shown in Fig. 9.1-right (again taken from [50]) and we observed a maximum average TOF rate of 14 Hz/cm². From the two plots in Fig. 9.1 it is possible to extrapolate the TOF rate to the luminosity foreseen in the ALICE upgrade beyond 2018. The expected rates will be 60 Hz/cm²: test beam results [51] indicate that also in the high-luminosity LHC period the MRPCs will be able to operate without loss in performance. From Fig. 9.1-right it is also possible to compute an average induced charge of ≈ 6 pC per track. This value is slightly higher than what was obtained in test beam [52], but still compatible. The difference depends on the fact that in ALICE the particles are of different species and cross the MRPC at different angles and with different momentum spectra. This low charge ensures a good rate capability and protects the detector from aging [51]. Further details can be found in [50].

The present TOF readout can already cope with triggers of tens of kHz. For the ALICE upgrade program the main aim will be to further increase the present limit up to the minimum bias trigger both in pp and Pb-Pb interactions. As explained in the Letter of Intent, this can be achieved without major modification of the present hardware. A continuous readout would be instead unaffordable both for hardware and budget reasons.

In the following the TOF readout will be briefly reviewed and the main hardware and software modifications for the upgrade will be described. With respect to what was antici-
Figure 9.1: Left: the TOF current versus luminosity in Pb-Pb and p-Pb. Right: the TOF estimated rate versus HV current. In both figures the points and the bands indicate the average and the spread of the measurements, respectively. The dashed line is the linear fit to the 2013 data.

9.2 TOF present readout and limitations

The existing TOF readout [53] is shown in Fig. 9.2. Each of the 18 azimuthal sectors of ALICE houses a TOF SuperModule, which is readout by 4 electronics crates. In each crate 1 DRM (Data Readout Module) collects the data of 10 TRMs (TDC Readout Module) [54], each of them including 30 HPTDC [55, 56] chips: 2400 channels are read-out in each crate. The pipelined internal architecture of the HPTDC chips coupled with readout buffers in the TRMs allows a zero dead-time readout.

The readout is done in three distinct phases:

- HPTDC readout: the readout of HPTDC chips internal buffers and shipping of data to TRM internal memories.
- VME readout: the readout, over the VME bus, of the 10 TRM cards;
- DAQ readout: the shipping of data from the DRM to the ALICE Central DAQ over a DDL link;

In terms of DDL links data segmentation is equal to the number of crates, that is 72. At L1 arrival ($\approx 6 \mu s$ after collision) a trigger is sent to the HPTDC and at the L2 arrival ($\approx 80 \mu s$ after collision) the TRMs are read-out.
9.3 Upgrade implementation architecture

The existing limitations of the current scheme were discussed in the Letter of Intent and, extensively, in [57].

In short, the system which was operated during run 1 was limited by several factors, including the amount of DAQ LDCs serving multiple TOF DDL links and the servers used for that purpose. In practical terms the readout was limited to some tens of kHz, already close to the foreseen targets for ALICE upgrade in PbPb runs. These limitations will be removed in the new DAQ scheme and are no more considered. The system analysis showed that the readout time of the HPTDC chips inside TRM cards sets a 440 kHz upper limit for the absolute maximum trigger rate that can be sustained by the TOF. Replacement of these cards (and of the HPTDC chips) is neither advisable or feasible and it is therefore not planned.

Between the maximum theoretical achievable rate and present DAQ limitations, subsequently additional bottlenecks come from the data transfer speed over VME (currently ≈ 40 MB/s), the data size of almost empty events (which are the majority in pp collisions), the current trigger dispatch protocol and the performance of DDL links with small size payload per event. Potentially a hardware upgrade of the existing readout card might not be strictly needed because a 50-100 kHz sustained rate could be reachable only upgrading the firmware but this would limit the TOF contribution in pp runs and it would not allow the exploitation of the new DDL and TTS link capabilities.

In the Letter of Intent we explained planned further work to study and curb these limitations would have been done towards the preparation of the present TDR. Results and work in progress are presented in the next section together with the conceptual design of the foreseen new readout card.

9.3 Upgrade implementation architecture

The ALICE DAQ group performed rate tests with upgraded DAQ cards (DDL RORC over PCIe) and updated mother-boards with respect to those used at ALICE during run 1. On the sending side a test bench card similar to the on-detector part of the DDL, the custom source interface unit (SIU), which is comparable to the current version installed in TOF.
DRM cards was used to check maximum achievable rates with an event size comparable to the foreseen payload from TOF crates (≈ 200 bytes): rates up to 400 kHz have been reached, making it clear that the TOF will not suffer limitations from the DAQ bandwidth for the upgrade. The installation of DDL 2 or DDL 3 links on the new DRM cards will further avoid any bottlenecks on this respect.

The data segmentation will remain the same (ie. the whole TOF is read-out via 72 DDL links, each corresponding to the readout of a VME crate). The data format of the control words of each TRM (currently 24 bytes) will change and it will be reduced to 8 bytes when no hits are present. As discussed in the Letter of Intent this will greatly reduce the payload/event and the requirements on the VME bandwidth to be achieved. We foresee to deploy upgraded firmware already for run 2. New data format is described in Fig. 9.3.

![Figure 9.3](image)

Figure 9.3: New data format for control words sent by each TRM. Headers and trailers of each chain of 15 HPTDC data will be dispatched only if at least one hit is present otherwise they will be suppressed. Status bits S0 and S1 will allow to check data suppression worked correctly. This approach will reduce by a factor three the data size to be transferred over VME bus for ‘almost empty’ events, which are the dominating ones operating with a minimum bias trigger as foreseen in run-3.

The foreseen data size per DDL link will depend on event multiplicity. For almost empty events (in minimum bias events in pp collisions 50 hits/event are expected in the full TOF) this will be ≈ 140 bytes growing up to ≈ 1200 bytes for most central collisions in PbPb.

Internal HPTDC buffers allow to comfortably wait, with zero dead-time, for the L1 trigger. There is no need for TOF to deliver L0 to its FEE, also because a reject signal (e.g. L0 not confirmed by L1) would force however the need to read all HPTDCs and then discard the data. Upon L1 reception the signal will be passed to HPTDC and VME readout will start immediately after they are made available on the readout FIFOs inside the TRMs. It is important to note this is currently done when awaiting the L2 accept signal, so this does not really add to the readout time. In run-3 this will be different. Besides the already discussed time to scan and read-out HPTDCs (could be up to ≈ 3 µs depending on multiplicity as discussed in [57]), the time transfer over VME will determine the final TOF maximum achievable rate.

To improve the VME throughput over the backplane, we plan to take advantage of the fact all VME cards (master and slaves) work on the same LHC clock. This can be exploited particularly implementing a synchronous protocol as the 2eSST VME standard. On the other hand we are limited by the existing hardware (both FPGAs and VME bus transceivers) mounted on the VME slave cards. The implementation of a simplified 2eSST protocol is envisaged, avoiding initial rate negotiation as foreseen by the origi-
9.3 Upgrade implementation architecture

The theoretical achievable throughput, limited by the performance of existing VME slave cards, is 160 MB/s, but the actual rate depends also crucially on the time spent during the initial data transfer phase (asserting addresses on the backplane).

Taking together the set of these results and developments, we can therefore confirm that the only hardware intervention to make the TOF fitting for the upgrade purpose will be the production of a new DRM card.

In front of a relatively small investment, the TOF will gain greater benefits upgrading its DRM card. This will allow to reach higher rates (likely around 300 kHz) which will ensure that in a short time a high statistic sample can be acquired in pp collision with events having ITS, TPC and TOF read-out. The benefits for ALICE physics program are evident. Moreover this hardware upgrade will allow the use of more modern TTC and DDL links, including a better handling of the busy signal over the new TTS system implemented using GBT links. Even if the multibuffer system - built-in inside the HPTDC architecture - allows the TOF to safely handle many triggers, the busy will need to be dispatched with minimal latency ($O(\mu s)$) to protect against FIFO overflow and other potential busy reasons (DAQ not coping with data and some VME cards not ready). With a new DRM card we might further expect some benefits on the 2eSST obtainable performance (that is a 160 MByte/s bandwidth) improving the hardware of bus transceivers on the master card. This is not guaranteed however because, as discussed, the hardware of the VME slave cards will not be reviewed.

Figure 9.4 shows the readout scheme after the foreseen upgrade.

![Figure 9.4: New TOF readout scheme, with upgraded components highlighted.](image)

Not all the actual technical implementation details of the new DRM card (“DRM2”) have been already defined, mainly due to the uncertainties about new hardware supporting trigger and DAQ links. Production of prototype cards are expected to start in 2014 following availability of chosen standards.

A conceptual design layout of the card is shown in Fig. 9.5 and we list here some considerations and information about hardware choices and differences with respect to the existing card.

- a SmartFusion2 FPGA from Microsemi is the current favourite candidate for DRM2 and an obvious successor of the Actel APA750 currently used on the DRM. Being
Flash programmed it provides SEU immune configuration cells and it has several built-in radiation tolerant features such as SEU protected memories. Interestingly this FPGA features high-speed serial interfaces (important to implement IP cores towards new TTC and DDL links) and an ARM CPU core. Given its capabilities are much higher than the current FPGA used in the DRM, we are very confident it will be able to replace the second FPGA (an Altera Cyclone) currently on board on the existing DRM, taking care of the slow control optical link;

- the Slow Control Link is used by the TOF DCS servers to monitor and configure Front End Electronics. It is additionally used to collect spy data during data taking for control of data consistency and monitoring of several DCS parameters (namely temperatures and thresholds). The memories shown in the Fig. 9.5 are used to stage collected data in multi-events buffers for DCS transfers. This arrangement worked very well during run 1 and before run 2 the back-end links will be already upgraded to PCIe, similarly to what the ALICE DAQ did for D-RORC cards;

- the ARM processor was installed inside current DRM to provide remote programming of Actel FPGAs inside TOF VME cards, via a private JTAG bus implemented on the VME backplane. The current hardware, a commercial piggy-back card mounting an ARM Atmel processor running Linux, could be reused. We will explore however if the ARM core inside the Microsemi FPGA could be used for this purpose, simplifying the design of the card.

- for the TTS link a bi-directional GBT link is foreseen, used also to provide the busy signal to the Central Trigger Processor.

- The interface to the back-end DAQ will be a DDL 2 link as baseline option (no DDL 3 is foreseen in the cavern). The encoding will be again implemented inside the FPGA via an IP core provided by the ALICE DAQ group. The implementation of a
DDL 2 link on the new DRM will take advantage of the expertise gained by TPC and TRD groups during run 2 (a DDL 2 link is operating on the Readout Control Unit (RCU) for these detectors).

Radiation tests will be carried out as necessary with untested components once defined. We plan however to use largely the existing tested components on the DRM exploiting the know-how gained during DRM electronics development (with features like a watchdog microprocessor protecting against latchup). We will also rely on irradiation tests which are currently being carried out by other ALICE groups on SmartFusion2 FPGAs.

9.4 Schedule, funding and institutes

A total cost of 600 kEU is foreseen for the production of the new DRM cards and related R&D costs (prototype cards, radiation tests, software licenses, test setup in laboratories, etc.). The foreseen upgrade schedule with spending profile is shown in Tab. 9.1.

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
<th>Cost [kEU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Firmware development (2eSST, data compression)</td>
<td>15</td>
</tr>
<tr>
<td>2014</td>
<td>Prototype card: testing new FPGA with GBT and new DDL links</td>
<td>35</td>
</tr>
<tr>
<td>2015</td>
<td>Finalization of specifications, radiation tests, tendering</td>
<td>50</td>
</tr>
<tr>
<td>2016</td>
<td>Start of production of DRM cards</td>
<td>250</td>
</tr>
<tr>
<td>2017</td>
<td>End of production</td>
<td>250</td>
</tr>
<tr>
<td>2018</td>
<td>Installation at pit and Commissioning</td>
<td></td>
</tr>
</tbody>
</table>

Table 9.1: TOF upgrade plan: spending profile is also shown.

The involved institutes in this project summarised in table 9.2.

<table>
<thead>
<tr>
<th>Institutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>sezione INFN and Dipartimento di Fisica dell'Universitá, Bologna, Italy</td>
</tr>
<tr>
<td>sezione INFN and Dipartimento di Fisica dell'Universitá, Salerno, Italy</td>
</tr>
<tr>
<td>Centro Studi e Ricerche e Museo Storico della Fisica “Enrico Fermi”, Rome,</td>
</tr>
<tr>
<td>Italy</td>
</tr>
<tr>
<td>Gangneung-Wonju National University, Gangneung, South Korea</td>
</tr>
</tbody>
</table>

Table 9.2: TOF institutes.
Chapter 10

Fast Interaction Trigger - FIT

10.1 Introduction

In the present ALICE detector there are three forwards detector systems, the T0 [59], V0 [60] and FMD [61], that provide minimum bias trigger, multiplicity trigger, beam-gas event rejection, collision time for TOF, offline multiplicity and event plane determination. In order to adapt these functionalities to the collision rates of the ALICE upgrade, it is planned to replace these systems by a single detector system, called the Fast Interaction Trigger (FIT). Two sensor technologies are investigated for FIT. They represent improvements of the current T0 and V0 detectors. We refer to these modified detector components as T0-Plus and V0-Plus. While it would be possible to build the FIT based on only one technology, it might lead to loss of redundancy and partial reduction of functionality. We intend to investigate both sensor technologies concurrently and to develop front-end electronics suitable for both technologies. The readout system adopted for FIT will follow the scheme of the current T0 detector using the DRM and TRM modules developed for the TOF detector. For this reason, even if FIT employs both sensor technologies, it will appear as a single detector system.

10.2 Performance of the current T0 detector

The current T0 detector consists of two arrays of Cherenkov counters (T0-C and T0-A) positioned at the opposite sides of the Interaction Point (IP) at distances of -70 cm and 370 cm. Each array has 12 cylindrical counters equipped with a quartz radiator and a photomultiplier tube (see Fig. 10.1). T0-C covers the pseudo-rapidity range $-3.28 < \eta < -2.97$ and T0-A covers $4.61 < \eta < 4.92$. Due to the small acceptance of the T0 arrays, the time resolution and efficiency of the T0 detector improve considerably with event multiplicity. For instance in pp collisions, T0 system achieves a 40 ps time resolution and 50% vertex efficiency. For central and semi-central events (centrality range 0-60%)
Figure 10.1: Conceptual drawing of the trigger detectors on the C-side as they are now (left) and after the upgrade (right). The new T0-Plus detector will consist of 20 rectangular modules. Although the upgraded V0 detector will have a modified light collection system, the area covered by the scintillator would remain the same.

in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, the corresponding values are ~ 21 ps for time resolution and close to 100% for vertex efficiency, as shown in Fig. 10.2.

T0 electronics

The block diagram of the electronics and readout scheme used by the present T0 detector is shown in Fig. 10.3. The signals of each of the 24 PMTs are fed to preamps housed in the so-called shoeboxes, placed at 6 meters from the detector. The main reason for the shoebox was to provide the wake-up signal for the TRD, however this will be derived in a different way already after LS1. Nevertheless, because of the considerable distance between the photo-sensors and the electronics racks, where the fast electronics will be located, we envisage the first stage of signal amplification at a distance of no more than 3 m from the detector. From the shoebox, the signals are sent to the trigger and readout electronics located in the racks outside the magnet. The fast trigger electronics includes processing of the PMT signals, generation of the required trigger signals and shaping for digitization and storage by the TRM and DRM modules.

The readout electronics processes, digitizes, and sends for storage the arrival time and amplitude from each of the photo sensors. The main components of this system are custom VME crates (SY2390), the TRM (TDC Readout Module), the CPDM (Clock and Pulse Distribution Module) and the DRM (Data Readout Module). All these components
10.3 Performance of the current V0 detector

The V0 system consists of two discs at distances of -90 cm and 329 cm from the IP and cover the pseudo rapidity-ranges $2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.8$. The two detectors are segmented in four rings and 8 sections in the azimuthal direction. The system is made of plastic scintillator from Bicron and light is collected with WLS fibers embedded in both faces of V0-A or glued along the radial edges of V0-C.

The V0 systems generate two types of trigger signals. One type is based on pre-adjusted time windows that corresponds to beam-beam or beam-background in coincidence with the time signals from the detectors (see Fig. 10.4 left). This is used for minimum bias, beam-gas and multiplicity triggers. The second type is based on total charge and is used to trigger on multiplicity.

The V0 system also provides on-line monitoring of the luminosity and background rates using a time coincidence between the two V0 arrays.

A typical distribution of V0 amplitudes used for centrality selection is shown in Fig. 10.4.
Figure 10.3: Trigger and readout electronics of the present T0 detector.

(right). Fig. 10.5 (right) shows the resolution of the event plane as determined by the V0.

V0 electronics

The 32 channels of each V0 detector are received by a FEE that splits each PMT pulse into two. One is fed into charge-to-digital converters to integrate the charge. The other is amplified by a factor 10 and provides the leading edge timing as well as the width at the discriminator threshold. The time information of both leading edge and width is digitized by time-to-digital converters.

The block diagram in Fig. 10.6 shows the concept of the present V0 readout [63]. The shoebox in the diagram provides the wake up signal to the TRD. It is one of the features that will disappear in the future system. The Channel Interface Unit (CIU) performs charge and time digitalization. It contains an HPTDC that gives a precise time information for 8 channels i.e. one ring of V0. The CCIU performs the interface function between the DAQ and the electronics as well as the final processing of the trigger signals.
10.4 Required functionality for the FIT

The upgraded trigger detector needs to fulfil the following requirements:

- Minimum Bias trigger for pp collisions with efficiency comparable to the current V0, i.e. at least 83% for vertex (A&C) and 93% for the OR signal (A|C).

- Event Multiplicity determination capable of selecting and triggering on central as well as on semi-central collisions. The centrality selection should match the performance of the present V0.

- Vertex location with a performance comparable to the present T0 system

- Evaluation and rejection of beam-induced background and in particular beam gas event sensitivity on the level of the current V0 detector.

- Time resolution better than 50 ps for pp collisions, as in the present T0 system.

- Determination of collision time for TOF with resolution better than 50 ps.
• Event plane determination with a precision similar to the present V0 system (see Fig. 10.5)

• Minimal ageing over the ALICE operation period.

• No after pulses or other spurious signals.

• Direct feedback to LHC on luminosity and beam conditions.

10.5 T0-Plus detector concept

The most natural approach to address the above requirements would be to increase the acceptance of the current T0 detector to match that of the V0. Using the present setup of a quartz+PMT is however impractical and not cost effective. Instead, a new concept with quartz radiators coupled directly to MCP-PMT based light sensors is proposed. Fig. 10.1 shows a sketch of 20 rectangular modules of such a detector at a position between the current T0 and V0.
MCP-PMT technology

An MCP-based trigger detector was considered in the 1990’s, during the initial planning and construction phase of ALICE. At that time this technology was not selected, as its long-time reliability had not yet been established. Since then, rapid progress has been made, driven primarily by the demand for MCP-based night vision devices for the military. The most significant developments were:

• Atomic Layer Deposition technology [64]
• Modified photocathodes [65]
• Reduced outgassing (borosilicate glass)
• Commercially available self-contained MCP-PMT units

There are currently three producers capitalizing on these developments: Hamamatsu (Japan), Photonis (USA), and BINP (Novosibirsk in Russia). According to our recent (June 2013) market survey, the most suitable module for the trigger upgrade is XP85012 Planacon from Photonis.

XP85012 Planacon

The XP85012 Planacon consists of a sealed, rectangular vacuum box of about $59 \times 28 \text{ mm}^3$ housing a pair of microchannel plates in a chevron configuration [66]. The pore size is $25 \mu\text{m}$ with the length to diameter ratio of 40:1. There are two front window options available: Schott 8337B or UVFS(-Q). The spectral range is 200-650 nm with peak sensitivity around 380 nm and an average quantum efficiency of 22%. A gain of 10^5 is typically reached at 1800 V, with the maximum possible gain on the order of 10^7.

The cathode is subdivided into 64 square sections that can be read out individually or combined into bigger blocks. Both the ambient operating temperature range and the behaviour in the magnetic field conform to the ALICE conditions inside the L3 magnet.

Planacon has the largest relative (80%) and absolute (53 mm \times 53 mm) active area and the lowest price per surface of all the commercially available MCP-PMTs, making it the prime choice for the T0 upgrade. The same product has been selected for the timing detectors for PANDA [67] at FAIR in GSI and for NICA [68] in Dubna. Both projects have already conducted significant R&D on this detector, which allows us to build on their results. Some of the test results shown in this chapter were obtained by the PANDA and NICA collaborations.

Reliability and lifetime issues

Electrons multiplied by up to seven orders of magnitude in avalanches inside the microchannels inevitably degrade MCP surfaces, limiting the lifetime of the device. Likewise,
the positive ions traveling in the opposite direction in the strong electric field also cause
the generation of intense secondary electron showers and additional damage to the pho-
tocathode. The ageing of an MCP is typically reported by plotting the Quantum Efficiency
(QE) as a function of the Integrated Anode Charge (IAC). Before the advent of Atomic
Layer Deposition technology, MPCs suffered a drastic decrease in QE already after an
IAC on the order of 100 mC/cm\(^2\). The latest tests with the Planacon XP85012 show no
signs of degradation even after IAC of \(\sim 5\) C/cm\(^2\) \[69\], as shown in Fig. 10.8. Hamamatsu
is now developing an MCP-PMT that will also push the limit beyond \(\sim 5\) C/cm\(^2\). The new
product is expected on the market in 2015 that is in time for the upgrade.

A minimum ionizing particle (MIP) traversing a 20 mm thick quartz radiator generates
about 1000 photons. The Quantum Efficiency (QE) of the Planacon QE, it is around
10% hence 1000 photons from 1 MIP will trigger 100 avalanches. Typical gains in use
are around \(10^5\). With such a gain there are \(10^7\) electrons that reach the anode per MIP,
corresponding to a charge of \(1.6 \times 10^{-12}\) C. Referring to Section 3, the total number of
tracks will be around \(3 \times 10^{12}\) on the innermost sensors and thus the total charge is close
to \(\sim 4.8\) C/cm\(^2\). This value conforms to the already proven performance of PLANACON
[69], giving us confidence that the new MCP-PMT units will perform well for the ALICE
upgrade.

After-pulses

A serious issue complicating the use of PMT-based detectors (including the current T0
and V0) are after pulses. As can be seen in the left panel of Fig. 10.9, some 20-120 ns
after the main pulse, after pulses with amplitudes of about 20% of the primary peak occur.
This phenomenon is well known and is attributed to the acceleration of ions triggering
secondary signals. For low-multiplicity events, that is when most of the primary pulses
are generated by a single MIP traversing the radiator, this phenomenon is not a problem
since the after pulses fall below the threshold of the discriminator. At higher multiplicities
this is no longer the case. Since the amplitude of an after pulse scales roughly with
10.5 T0-Plus detector concept

Figure 10.8: Dependence of the Quantum Efficiency on the Integrated Anode Charge for a variety of MCP-PMT sensors measured by PANDA collaboration. The performance of the ALD treated samples from Photonis USA is shown by the top curves.

the amplitude of the primary pulse, at higher multiplicities one gets potential problems especially when there might be an overlap with signals from the previous bunch crossing.

The MCP-PMT investigated has not shown any detectable after pulses, as can be seen in the right panel of Fig. 10.9.

Figure 10.9: Oscillographs showing the shape of pulses from a PMT currently used by T0 detector (left graph) and from a XP85012 proposed for T0 upgrade (right graph). No after pulses are visible in the Planacon spectrum.

Quartz radiators

The fragmented anode of the XP85012 makes possible to increase the granularity of the detector by dividing the quartz radiator into smaller segments (see Fig. 10.10). This is possible because the total internal reflection from the sides of the radiator segment directs all Cherenkov photons onto the photocathode directly under this segment. Such increase
in granularity will improve the performance of the detector especially for high-multiplicity events.

Figure 10.10: Concept of T0 module with a quartz radiator divided into 16 elements. The dimensions are approximate and do not account for detector housing and electronics.

Choice of quartz supplier

Two possible suppliers of quartz material for the radiator have been identified: Gus-Khrustalnyi from Russia, the producer of quartz KU-1, and Heraeus of Germany, which produces SUPRASIL 1. The former material is used by the current T0. The latter has a slightly wider transmission band at very short wavelengths. Both are suited for the upgrade of T0.

Surface coating

Cherenkov light cones generated by MIPs entering perpendicular to the front surface of a radiator do not lose much intensity upon reflection from the sides because the conditions for the total internal reflection are fulfilled. To take advantage of this fact, modules of the current T0-C array are inclined to face the IP. When the entrance angle of charged particles increases, some of the light escapes from the sides of the quartz. It is, as yet, unclear if the space available for the upgraded T0 would be sufficient for tilting of the detector units towards the IP. If not, highly reflective coating of the radiator sides will be employed to minimize the light loss.

Also, coating of the front surface should be chosen depending on the desired performance for particles traveling in the opposite direction. Without any coating the polished
front surface of the radiator would still reflect a sufficient amount of light towards the photocathode to generate a peak of roughly 50% the normal amplitude. A properly selected light absorbing coating would remove this peak completely, while a reflective layer would bring the signal amplitude for particles traveling backwards closer to that of the normally traversing particles.

Final decisions on segmentation, angles, and optical coatings depend, of course, on the outcome of detailed simulations and the results of beam tests using various possible configurations. In any case our aim is to design T0-Plus that will be also able to monitor and measure beam-gas events. This is definitely possible but some more R&D is needed to find the optimum solution that would both be sensitive to the background events and yet be able to discriminate against them. This is a new feature of T0-Plus as compared to T0.

Detector prototyping

The results presented in here have been obtained with a prototype constructed by NICA collaboration (Fig. 10.11). Judging from the existing prototype the minimum thickness of the fully assembled and cabled module is estimated at \sim10 cm. The sensor itself is \sim3 cm thick, the quartz would be 1.5-2 cm, the PCB with front-end electronics attached to the sensor \sim2 cm, and 1.5 cm in the front and 1.5 cm in the back to accommodate the bending angle and connector thickness of signal and electrical cables and optical fibers.

Figure 10.11: Prototype of a detector module based on XP85012. Part of the outside cover is removed to show the rear side of the sensor with front-end electronics attached. This prototype has the quartz radiator and the anode divided into 4 equal sectors.
MCP-based devices are known for their very good timing properties. The tests conducted both by ALICE and the PANDA and NICA groups confirm the excellent performance of XP85012 in that respect as shown in Fig. 10.12. The Time-of-Flight resolution of 42 ps as measured with cosmic rays by a pair of MCP based detectors corresponds to a resolution of 30 ps for a single detector element. As expected, the upgraded T0 should therefore have the same or even better time resolution than the current detector.

![Figure 10.12: Measured TOF resolution obtained with cosmic rays for various pairs of MCP-PMT sectors obtained with the detector prototype shown in Figure 10.11.](image)

The intrinsic efficiency for a quartz radiator with an MCP-PMT detector is close to 100%. That means that every MIP traversing a full path inside of the quartz generates a proper signal that will be registered. However the geometric coverage of the detector unit is less than 100%. The ratio of active surface to the physical outline of the XP85012 is 80%. When the necessary housing and mechanical support is added, this ratio will drop to about $\sim 75\%$, depending on final design details.

According to the manufacturer, the approximate weight of XP85012 is 128 g. The weight of the $53 \times 53 \times 20$ mm3 radiator made of fused quartz (~ 2.2 g/cm3) is approximately
124 g. The board with electronics and cable connectors together with a protective cover would bring the total weight of one module to 400-500 g. Therefore, the weight of a 20 unit array would be about 8-10 kg plus the weight of the HV cables (total of 20), signal cables (total of $4 \times 20 = 80$) and optical fibers (≤ 20).

Acceptance and shape optimization

The demand to maximize the efficiency for Minimum Bias events requires efficient coverage of the available space with detector modules. The envelopes defined by detector integration are a minimum inner radius of 50-60 mm and a maximum outer radius of 170-200 mm. The proposed detector configuration is shown in Fig. 10.13. Each MCP-PMT module will be divided into 4 equal parts by cutting the quartz radiator into 4 and arranging the 64 anode sectors into the corresponding 4 groups. As a result, each array on the A and on the C-side will function as $20 \times 4 = 80$ independent detector units.

![Figure 10.13: Proposed configuration and segmentation of 20 modules of T0-Plus detector around the beam pipe.](image)

It is still to be decided whether to place the C-side T0-Plus detector on the front-absorber or on the so called ‘cage’ that supports the beampipe, ITS and MFT. Fixation on the front-absorber allows an inner radius of 50 mm but has the drawback that the detector is only accessible if the TPC is moved to the parking position. Fixation on the support cage allows an inner radius of only 60 mm, but would ease the access to the detector.

For the detector optimization, a round of simulations with an ideal geometry assuming a perfect ring detector was performed. In these simulations, various values for R_{min}, beam
pipe options, and placement along the beam axis were investigated. In addition, 15000
events generated with PHENIX for pp collisions at $\sqrt{s} = 14$ TeV were projected onto the
real geometry of T0-Plus: 20 MCP-PMT sensors with $53 \times 53 \times 20$ mm3 quartz radiators
placed around beam pipe at 70 cm on the C side and 20 MCP-PMTs at 373 cm on the A
side. On both side the distance from the center of the beam pipe to the outer edge of the
sensor was $R_{\text{min}} = 60$ mm. The same geometry was used for the simulation with HIJING
of 8000 events of the most peripheral (b=13-20) PbPb collisions at $\sqrt{s} = 5.5$ TeV. For all
calculations the standard beam pipe geometry (adopted for upgrade simulations) was
used. Fig. 10.14 shows the simulated T0-Plus efficiency as function of primary particle
multiplicity in pp collisions, where the average is around 235 with a very large spread
around this number. Fig. 10.15 shows the efficiency as a function of the impact parameter.
Tab. 10.1 summarizes the main results of the simulations. We can conclude that the
performance of the T0-Plus detector is very close to the present V0 detector, as specified,
and that the choice of the inner radius between 50 and 60 mm is not a critical issue.

![Figure 10.14: Simulated efficiency of T0-Plus detector as a function of primary particle multiplicity.](image-url)
One of the advantages of the current ALICE trigger detector setup is the partial overlap in functionality between T0 and V0. It is desirable to maintain at least some of the present redundancy in the upgraded detector. A natural choice for a second detector subsystem would be V0-Plus. This would be a modified and improved V0, a plastic scintillator-based system with the frontend electronics integrated with T0-Plus and the readout complying with the TOF standard.

The existing V0 performed satisfactorily during LHC Run 1, with the exception of some issues due to after-pulsing. In the following, a new V0-plus is sketched which meets the requirements of the new run conditions, in particular the increased collision rates in pp and PbPb. The severe conditions expected require a new design providing better time resolution, a larger acceptance, and much smaller after pulsing. The V0 detector assembly will be composed of a small number of independent modules which will be easy to be replaced at a minimal cost.

The new system design must continue to deliver the trigger signals provided by the current V0, including the possibility of vetoing the background due to beam-gas interactions. Because of much larger acceptance, it will both extend and complement the functionality. The final design will be developed within the Fast Interaction Trigger group, to ensure the optimal functionality of the Fast Interaction Trigger detectors. Both T0 and V0 arrays are located on both sides of the interaction point [4] at small radial distance from the beam line. A similar geometry will be used for the upgraded detectors.

V0-Plus will supply fast time signals to the first level trigger and, in addition, will provide an off-line multiplicity measurement and determination of the reaction plane. The design goal
for V0-Plus is to improve the time resolution by an order of magnitude as compared with the current V0 and approach the level of 200 ps, while maintaining a large acceptance and high efficiency for the Minimum Bias Trigger. Better time and amplitude resolution achieved by improving the light collection from the scintillator will also improve the beam-gas background rejection capabilities of V0-Plus.

The default position of the V0-Plus arrays coincides with that of V0A and V0C. The new arrays will consist of 32 (V0C+) and 32 (V0A+) cells of BC408 scintillation plastic. On the A-side where the space restrictions are not critical, the light collection will be provided by fine mesh photomultiplier tubes coupled directly to the scintillator cells. On the C-side, the available volume will be restricted by the new Muon Forward Tracker (MFT).

V0-Plus rapidity coverage

V0A-Plus will consist of 5 rings, i.e. one more than the present V0, in order to increase the acceptance and eliminate the rapidity gap of 0.8 units between the SPD and the present V0A (Fig. 10.16). The new ITS [7] will have a wider pseudo-rapidity coverage of $-2.3 \ll 2.3$. Extending the coverage of V0A-Plus to $\eta = 2.2$ eliminates the gap and provides a small overlap for efficiency determination using an independent system. Such overlaps in the existing forward detectors have proven to be extremely useful.

Figure 10.16: In the present system (left) there is a pseudo-rapidity gap of 0.8 units between the Silicon Pixel Detector and V0A. Adding a ring of 0.6 units in pseudo rapidity would increase the acceptance and would even provide an overlap useful for testing and efficiency determination (right).
The pseudo-rapidity coverage of V0-Plus also overlaps with the coverage of T0-Plus and the MFT, providing the ability to perform important cross checks for physics analysis. The pseudo-rapidity coverage is summarized in Tab. 10.2.

<table>
<thead>
<tr>
<th>Ring</th>
<th>V0A-Plus</th>
<th>V0C-Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\eta_{\text{max}}/\eta_{\text{min}}$</td>
<td>$\theta_{\text{max}}/\theta_{\text{min}}$</td>
</tr>
<tr>
<td>0</td>
<td>5.41/4.5</td>
<td>0.7/1.3</td>
</tr>
<tr>
<td>1</td>
<td>4.5/3.9</td>
<td>1.3/2.3</td>
</tr>
<tr>
<td>2</td>
<td>3.9/3.4</td>
<td>2.3/3.8</td>
</tr>
<tr>
<td>3</td>
<td>3.4/2.8</td>
<td>3.8/6.9</td>
</tr>
<tr>
<td>4</td>
<td>2.8/2.2</td>
<td>6.9/12.7</td>
</tr>
</tbody>
</table>

Table 10.2: Pseudo-rapidity coverage of the new geometry. V0A+ may have an additional ring to cover the gap between the Silicon Pixel Detector (SPD) and the present V0A.

Redundancy is particularly important on the C side where access is difficult and deficiencies or failure of any of the detectors in the region should be backed up with alternative solutions. The distance to the interaction point is less than 1 meter and access to the area requires a removal of the central detectors of ALICE and of the beam pipe.

Photo sensor options for V0-Plus

Both a MCP-PMT and a fine mesh PMT as possible light sensors for the upgraded V0 are considered. The former has already been described in the T0 section above. The use of the same sensor would have many advantages, as it would fully integrate the fast trigger detectors already at that level. On the other hand, the same sensor technology would increase the vulnerability of the trigger to unforeseen long-term problems with the MCP-PMT solution. If the primary goal is redundancy, one should consider the use of traditional PMTs for V0.

The R7761-70 photomultiplier from Hamamatsu [9] has been tested and will be used after LS1 at the actual V0 system. It is a fine mesh phototube with good timing properties. It has a 38 mm diameter with 27 mm diameter effective area. The spectral response of this PMT ranges from 300 nm to 650 nm, and peaks at 420 nm. With this broad range response, the WLS cookie can be avoided, thereby improving the time response of the detector. The photocathode material is bialkali and there are 19 dynode stages. It can be operated at lower Voltage than the previously used 16 dynode stage PMT from Hamamatsu (R5946), reducing the after pulsing rate for similar gains. The rise time is 2.1 ns and the transit time is 7.5 ns. The MCP from Photonis [60] PP0365G which has a quartz window and a single anode has been tested. It offers immunity from magnetic field, a fast response and very low time jitter.

10.7 Common front-end and readout electronics for FIT

As discussed earlier the T0-Plus and V0-Plus will use the same front-end and readout electronics. The system will be based on the present T0 detector using the TOF modules.
for data readout.

Front-end electronics

FIT will use the same general scheme of front-end electronics as that used by T0 (see Fig. 10.2 and Fig. 10.3). The main new element of the front-end electronics will be the modernized amplifier. Because of the high radiation levels, it will have to be located not directly on the sensor but several meters from it. In addition to the amplifier, there will be shapers, fan-ins and discriminators to prepare the signal to be sent to the electronics racks. Functionally, the electronics sketched in Fig. 10.17 will replace that currently in the Shoe-box (see Fig. 10.2).

![Figure 10.17: Conceptual diagram of the new first stage of the front-end electronics for the FIT. This part will replace the current electronics depicted on Fig. 10.3 by the diagram labeled shoe-box.](image)

Readout

Currently T0 uses only one DRM and one TRM. As FIT will have considerably more channels, the number of TRMs must be increased. Each TOF crate has 10 slots for TRMs. Going beyond that would require additional crates and services and, as a result, considerably increase the complexity and cost of the readout electronics. To avoid these complications the options that would limit the readout of FIT to one VME crate are investigated. This work is done in close collaboration with the TOF group who is also working on increasing the VME transfer rate.
10.8 Funding

The most expensive items needed for the upgrade of the T0 detector are the new MCP-PMT units currently valued at $8500 each. Including the housing, quartz etc. it is reasonable to estimate \sim10 kCHF for each assembled detector module. Therefore, for a 2×20 module configuration plus 10 spares, one needs 500 kCHF. The cost of the electronics and readout will depend on the required segmentation. Since each MCP-PMT has the anode divided into 64 independent sections, the array of 2×20 modules could provide up to 2560 channels. Assuming a very modest segmentation of each anode into only 4 groups gives a total of 160 channels. The cost per channel for the current T0 electronics is \sim4 kEUR. More units will reduce the cost per channel. The total cost of T0 Upgrade is estimated at \sim1 MCHF. This sum would be equally divided between the detector units (500 kCHF) and electronics (500 kCHF).

The preliminary cost estimate for the V0-Plus detector is:

- Scintillation plastic 10,500 CHF
- Optical Fibers 10,000 CHF
- PMT Hamamatsu quotation 2013 10,000 CHF

- Front End Electronics, Data Acquisition System, Detector Control System 130,000 CHF

Final cost estimating is underway; the numbers provided are present rough estimates.
The total cost of the V0-Plus as described is 500 kCHF.
Chapter 11

Zero Degree Calorimeter - ZDC

11.1 The present ZDC readout system

The ZDC acquisition and trigger system has been designed with a conservative approach. Since it is located in one of the ALICE control rooms outside of the cavern, i.e. in a zone without strong radiation levels during data taking and therefore of easy access, the system uses NIM and VME electronics. At present it employs a combination of commercial and custom VME modules. The commercial modules are connected to the front-end and provide the measurement of the signal charges (CAEN V965 QDC), of the arrival time of the signals (CAEN V1290 TDC) and the measurement of their rate (CAEN V830 scalers). A custom differential discriminator has been developed for the ZDC following the idea of Refs. [70, 71] in order to provide precise triggering even in presence of low frequency noise on the baseline. The discriminated signals are combined together through standard NIM modules to provide different logical combinations that can be modified when changing colliding beam types. In the future the combinatorial logic will be implemented in an FPGA.

Two custom modules are dedicated to the interface of the ZDC front-end with the ALICE trigger and readout systems. The ZDC Trigger Card (ZTC) aligns the ZDC trigger signals with the LHC clock and delays them in order to satisfy the timing requirements for L1 triggers. The ZDC Readout Card (ZRC) is dedicated to data acquisition. Upon receiving a L0 trigger it generates a gate for the QDCs and a strobe for the TDC. At the same time a BUSY signal is sent to the ALICE Local Trigger Unit (LTU) and from there to the Central Trigger Processor (CTP). Correct timing of the ZDC signals has been achieved using delay lines. Details of the timing are given in Tab. 11.1. If a L1 trigger is received in the appropriate time window, the event is read out to the ZRC buffers otherwise the FEE buffers are cleared. At the reception of the L2 accept signal (L2a) the event is sent to the DAQ through the DDL link, while in case of a L2 reject signal (L2r) it is discarded. The present acquisition system is able to sustain a L2a rate of ~ 8 kHz in the ZDC. This will double after LS1 thanks to the introduction of a Multi Event Buffer (MEB). For each event...
<table>
<thead>
<tr>
<th>Phase</th>
<th>ZDC signal</th>
<th>L0 trigger</th>
<th>Start (ns)</th>
<th>Duration (ns)</th>
<th>End (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collision at IP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Time of flight to ZDC</td>
<td>0</td>
<td>376</td>
<td>376</td>
<td>376</td>
<td></td>
</tr>
<tr>
<td>Signal formation</td>
<td>376</td>
<td>60</td>
<td>436</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patch cables</td>
<td>436</td>
<td>10</td>
<td>446</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L0 decision (LTU output)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>975</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>446</td>
<td>890</td>
<td>1336</td>
<td></td>
</tr>
<tr>
<td>Cable to CR4</td>
<td>1336</td>
<td>33</td>
<td>1369</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIFO/Cables in CR4</td>
<td>975</td>
<td>440</td>
<td>1415</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZRC delay +cable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1415</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1672</td>
<td></td>
</tr>
<tr>
<td>Delay lines</td>
<td>1369</td>
<td>323</td>
<td>1692</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11.1: L0 timing for the ZDC in Run 1/2. We follow the formation and propagation of the ZDC signals and of the L0 trigger along the different phases. The starting time for each phase, its duration and ending time is detailed in the Table. The events are ordered according to their ending time. The delays are tuned as such to provide a gate to the ADCs that opens 1672 ns after the collision (end of row “ZRC delay +cable”) i.e. 20 ns before the arrival of the analog signal of the ZDC (end of row “Delay lines”).

all the modules are readout, zero suppression is present only on the V1290 TDC. The event size for PbPb collisions is \sim 800 B.

The system is controlled by a VME processor that interacts with the ALICE Experimental Control System (ECS) through the SMI protocol [72]. At the same time the processor receives some portion of the events (pushed by the ZRC) to provide calorimeter hit rate information for the luminosity monitoring. This information is made available to the experiment through the DIM protocol [73]. A detailed description of the ZDC trigger and readout system can be found in Ref. [74].

The ZDC is operated only during PbPb and pPb runs. In this way the aging of the PMTs and of the detector can be kept to an acceptable level. During p-p runs the ZDC is turned on for short periods to prepare for the ion running.

11.2 Upgrade strategy

11.2.1 Introduction

The main target of the ALICE upgrade involving the ZDC is the improvement of the readout performance, allowing to read out the detector at 100 kHz without dead time. This cannot be achieved using the current QDCs because of the fixed dead time due to the charge conversion of $\approx 10 \mu$s per event. Consequently the ZRC has to be redesigned.
The new ZRC will be read out by Common Readout Unit, CRU. This simplifies the design and gives greater flexibility.

11.2.2 DAQ and trigger architecture

Data rates

In normal operation the readout of the ZDC will be triggered by the ALICE minimum bias signal. It would be difficult to use a triggerless approach because the ZDC is sensitive also to the electromagnetic dissociation processes (EMD) that result in neutron or proton emission from the colliding ions. For PbPb collisions at LHC energies the cross sections are \(\sim 25 \) times larger than the hadronic cross section since they increase faster with energy and scale as the square of the ion charge. This would result in an additional 5.2 MHz event rate on the ZDC that will need to be acquired and later discarded because the other detectors are not sensitive to these events. Moreover, the V1290 TDC modules and some digitizers available on the market have a limitation to 500 kHz trigger rate. The possibility to run triggerless on events where both neutron calorimeters are hit is under investigation. In this case the contamination from EMD events is much lower, however there is a potential loss of hadronic events.

For calibration purposes the system will be able to run triggerless in standalone mode. In this case a considerable dead time is induced by the saturation of the VME bandwidth because of the EMD events. However, this is not of concern because only the ZDC data will be collected.

Front-end readout electronics

The ZDC will replace the QDCs with digitizers with 1 GSamples/s. The modern digitizers available on the market have on-board FPGAs that allow a fast pre-processing of the data. In particular they allow integration of the signal and provide a time-stamp of arrival times. The payload of the digitizer is therefore much reduced compared to a full readout of all the samples. Another interesting feature is the measurement and subtraction of the baseline contribution to the integral. This feature allows the elimination of the modules that are dedicated to the baseline measurement, reducing therefore the payload. It would also be possible to implement pile-up rejection codes if the bunch spacing is reduced below 75 ns. Moreover data are made available without the dead time due to charge integration and conversion typical of conventional QDCs. The new modules have large readout buffers and support readout modes faster than BLT32, up to 2eSST. The V1290 TDC modules will also be upgraded to sustain higher transfer rates with a firmware upgrade and a small

\[\ast \] The firmware of the flash ADC should be customised to detect the presence of another collision, that is most probably electromagnetic, in the preceding bunch crossing. Since electromagnetic pile-up affects mainly the ZDC and is difficult to detect using the information of other detectors one needs to rely only on our measurement. If another collision is present, the event could be flagged as bad or alternatively one could subtract on-the fly the pile-up contribution. As a further possibility one could write the information about the signal shape in the data to allow a more refined subtraction during reconstruction.
<table>
<thead>
<tr>
<th>Source</th>
<th>Ch.</th>
<th>ADC ch.</th>
<th>ADC B</th>
<th>TDC ch.</th>
<th>TDC B</th>
<th>ZTC ch.</th>
<th>ZTC B</th>
<th>Scaler ch.</th>
<th>Scaler B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZNA/C</td>
<td>5</td>
<td>5</td>
<td>40</td>
<td>7^a</td>
<td>28</td>
<td></td>
<td>3c</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>ZPA/C</td>
<td>5</td>
<td>5</td>
<td>40</td>
<td>4^d</td>
<td></td>
<td>16</td>
<td>12</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>ZEM1/2</td>
<td>2</td>
<td>2</td>
<td>16</td>
<td>3^e</td>
<td></td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td>16</td>
<td>4</td>
<td>8</td>
<td>$4+8^g$</td>
<td>48</td>
</tr>
<tr>
<td>Control</td>
<td>4</td>
<td></td>
<td>3</td>
<td></td>
<td>12</td>
<td>1</td>
<td></td>
<td>$3+1^g$</td>
<td>16</td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td>338 B</td>
<td></td>
<td></td>
<td></td>
<td>+124 B</td>
<td></td>
</tr>
<tr>
<td>Control words</td>
<td></td>
<td></td>
<td></td>
<td>60 B</td>
<td></td>
<td></td>
<td></td>
<td>+12 B</td>
<td></td>
</tr>
<tr>
<td>Multi hit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\sim80 B</td>
<td></td>
</tr>
<tr>
<td>CDH+packing</td>
<td></td>
<td></td>
<td></td>
<td>60 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\sim540 B</td>
<td></td>
</tr>
</tbody>
</table>

- Assuming a single hit per event (the multi hit contribution is accounted separately)
- Five towers, sum of four subtowers, common && sum
- Common tower, sum of four subtowers, common && sum
- Common tower, sum of four subtowers, common && sum, most exposed tower
- ZEM1, ZEM2, OR of the two
- V830 scaler
- ZTC scaler

Table 11.2: Payload of the ZDC event, detailing the contributions of the neutron (ZNA, ZNC), proton (ZPA, ZPC) and electromagnetic calorimeters (ZEM1, ZEM2) and of the trigger and control signals. The ADC, TDC and ZTC information is readout for each event while the scalers are only readout when trigger is flagged as calibration, resulting therefore in an additional payload (as indicated). The event pile-up from the preceding and following bunch crossings results in additional payload on the multi hit TDC. This contribution has been estimated from the PbPb data taking of 2011. Space for the common data header (CDH in case it will be added by the ZRC and not by the CRU will be allocated.

During the 2013 pPb data taking a test of a digitizer (CAEN V1751) in parallel to the AL-ICE data acquisition was made. Its main features are: sampling frequency 1 Gsample/s, 10 bit resolution, 1 Vpp dynamics, 8 channels. The signal of the common photomultiplier of the neutron calorimeter on the Pb remnant side has been sent to two channels of the V1751. In the first channel the signal has been attenuated by 4.4 dB in order to match the dynamics of the signal with the input dynamics, in the second the signal has been amplified by a factor 2 to simulate the performance of a digitizer with higher resolution (~ 12 bit). In this case only the events with low energy deposition are treated correctly, while for the higher amplitude signals saturation occurs. The digitizer was triggered by...
the start of LHC orbit and for each event a full orbit was recorded. The identification of the signal, the integration and baseline subtraction were performed in the offline analysis. An example is shown in Fig. 11.1. In the left plot the charge of the attenuated signal is shown and the resolution of the 1n peak signal is 26% while the resolution of the right plot for the amplified signal is 21%, closer to the value obtained with the V965 QDCs. The contribution of the 10 bit resolution is therefore significant for the attenuated signal. We will therefore need 12 bit digitizers that are just starting to be available on the market.

![Figure 11.1: Spectra of the ZDC neutron calorimeter on the Pb-remnant side during pPb 2013 data taking at $\sqrt{s} = 5.02\,\text{TeV}$, obtained with a V1751 digitizer. The spectra are zoomed in the low part where the contribution of small neutron multiplicities (1n, 2n, 3n, 4n) are visible. The left figure concerns the signal attenuated by 4.4 dB, while the right figure is for the signal amplified by a factor 2. Despite that some optimization of the trigger algorithm is needed to reject noise, the spectrum for the amplified signal has better resolution.](image)

Read-out board

The ZRC board will be upgraded to support the new trigger and DAQ framework. Its functionality will be similar to the present module: it will receive and dispatch L0 trigger and BUSY, will readout the front-end modules and send the data to the ALICE DAQ system via the CRU. The new board will implement faster VME cycles like VME64 or 2eSST in order to have spare bandwidth on the VME bus to allow for a future increase of the luminosity and of the trigger rate. As opposed to the present ZRC that directly receives triggers on LVDS and TTC links and sends data through DDL, the new board will interface with the ALICE Common Readout Unit (CRU) that is being developed. This will simplify the design and make a future upgrade of the system easier. The connection with the CRU will be provided by one single bidirectional GBT connection. A scheme of the new ZRC board is shown in Fig. 11.2.

Trigger and busy handling

The ZRC will receive the L0 trigger from the CRU and distribute it to the modules through NIM and ECL ports on the front panel. The trigger signal will be delayed using on-board delay chips in order to satisfy the timing requirements at the level of the front-end boards. Upon reception of a L0 physics trigger an event will be acquired on the digitizers and
on the TDC. When a calibration (software) trigger is received, the scaler modules will be
read-out in addition. The events will be transferred to the ZRC and then sent to the CRU.

In case the trigger rate is high enough to saturate the transfer capability, the buffers on
the front-end modules will start to fill-up and the modules will raise an “almost full” BUSY
signal. The ZRC will receive these signals via dedicated inputs on the front panel and will
OR them in a BUSY that is sent to the CRU. The busy is likely to occur only when the
ZDC is self-triggered for calibration.

Concerning the allowed latency of the trigger signals the time of flight of the spectator
nucleons, the signal formation time, the cable length and the delay lines has to be con-
sidered. The V1290 TDC and the digitizers employ circular memory to store temporary
data that are then copied to the main buffers when a trigger is received. Since the mod-
ern digitizers have large on-board buffers, the limitation will be given by the V1290 TDC
with its 256 word deep memory shared by each group of 8 channels. With conservative
assumptions about the signal rates one can accept a L0 latency up to \(\sim 2 \mu s \) at the ZDC
FEE (that translates into \(\sim 1.6 \mu s \) at the CTP level) without danger of data loss. For the
L1 trigger there is not a strict requirement, it will just influence the buffer size which have
to be reserved for the events on the FE boards.
11.2 Upgrade strategy

Self-triggering operation

For calibration purposes the ZDC has to be readout also in self-triggering mode. The calibration run modes are:

- pedestal: to measure the baseline of the signals. This is strictly not necessary since the digitizer will offer the possibility to subtract automatically the baseline, however it will be useful as a monitoring tool to check the evolution of the baseline oscillations in different run conditions.

- laser: a light pulse is sent to the photomultipliers to measure the stability of the gain.

- cosmic ray trigger: when beam is not present, pairs of scintillators are placed above and below each calorimeter to allow triggering on the passage of cosmic rays. The light output for a minimum ionizing particle is ~ 1 photoelectron and this allows the stability of the gain of the photomultipliers to be checked.

- energy calibration: a minimum bias ZDC trigger signal is used to collect a significant sample of ZDC events in a short time interval. This sample is dominated by EMD events that involve the emission of a single nucleon and therefore the calibration of the detector.

- L1 calibration: the ZDC L1 trigger inputs are used to collect a sample of self-triggered events to carefully check offline the implemented trigger logic.

For this purpose the ZRC will have NIM or ECL trigger inputs and additional trigger outputs to drive the laser pulses. Each trigger input will have a delay line to allow precise alignment with the LHC clock. Upon reception of a signal in one of the trigger inputs, if the front-end is ready and the CRU link is operational, the ZRC will dispatch the trigger signal to the front-end and forward the event data to the CRU.

In the self-triggering operation mode, depending on the beam conditions, the ZDC can saturate the VME bandwidth and therefore have dead time. Moreover, for the pedestal, laser and cosmic runs it will collect events that are completely uncorrelated to the rest of the experiment. Therefore, for the moment, this operation mode is intended for standalone operation.

Interface to CRU

The interface with the CRU will be handled by one GBT link. The maximum theoretical VME bandwidth (320 MB/s i.e. 2.56 Gbit/s) can be actually by the GBT link.

ZDC triggers

The ZDC provides a L0 trigger given by the coincidence of the signals of the central towers of ZNA and ZNC. This reduces the background from electromagnetic dissociation
processes that is present in minimum bias triggers. This selection is routinely used in
data analysis and, in this way, will be made available at L0 trigger level. The system will
be based on two fast cables (one of which is already in place) connecting directly ZNA
and ZNC with a trigger logic that will be placed close to the CTP.

The ZDC L1 trigger output is given by logical combinations of the signals of the six
calorimeters. For each neutron and proton calorimeter the information has a redundancy
that allows elimination of the photomultiplier noise. In the present implementation the L1
trigger logics are synchronized by the ZTC and then forwarded to the CTP using LVDS
cables. The minimum latency for the ZDC L1 triggers (at the CTP input) is around 2.0 -
2.2\,\mu s depending on the trigger logic. The use of the present approach to dispatch the
L1 trigger signals will be continued.

11.3 Schedule, funding and institutes

The tables 11.3 and 11.4 show the schedule and funding respectively.

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Purchase and test in laboratory of a 12 bit ADC (R&D⇒15 k€)</td>
</tr>
<tr>
<td>2014</td>
<td>Definition of the architecture of the new ZDC Readout Card</td>
</tr>
<tr>
<td>2014</td>
<td>Firmware development on ”evaluation board” (R&D⇒5 k€)</td>
</tr>
<tr>
<td>2015-2016</td>
<td>Firmware development on ”evaluation board”</td>
</tr>
<tr>
<td>2015-2016</td>
<td>Design and construction of the ZRC prototype (R&D⇒30 k€)</td>
</tr>
<tr>
<td>2017-2018</td>
<td>Purchase of 12 bit, 1GSample/s flash ADCs (70 k€, rough estimate assuming that the price will be half of the actual one)</td>
</tr>
<tr>
<td>2017-2018</td>
<td>Refinement of the firmware on the ZRC prototype</td>
</tr>
<tr>
<td>2017-2018</td>
<td>Test of the ZDC readout card prototype</td>
</tr>
<tr>
<td>2017-2018</td>
<td>Design and construction of two final ZDC Readout Cards (30 k€)</td>
</tr>
<tr>
<td>2017-2018</td>
<td>V1290 TDC firmware upgrade and hardware modification to allow for 2eSST cycles (5 k€)</td>
</tr>
</tbody>
</table>

Table 11.3: ZDC schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>20 k€ for R&D</td>
</tr>
<tr>
<td>2015-2016</td>
<td>30 k€ for R&D</td>
</tr>
<tr>
<td>2017-2018</td>
<td>105 k€ for the upgrade</td>
</tr>
</tbody>
</table>

Table 11.4: ZDC funding.

The institutes shown below will jointly participate in the upgrade and in the testing activi-
ties:

- Sezione INFN and Dipartimento di Fisica dell’Università, Turin, Italy
- Sezione INFN and Dipartimento di Fisica dell’Università, Cagliari, Italy
11.3 Schedule, funding and institutes

- Gruppo Collegato INFN and Dipartimento di Scienze e Innovazione Tecnologica dell'Universit del Piemonte Orientale, Alessandria, Italy
Chapter 12

Electro Magnetic Calorimeter - EMC

12.1 The EMCal detector

The ALICE EMCal [75] is a shashlik-type sampling calorimeter that consists of ten full size super-modules (SMs) and two 1/3-size SMs, providing 107 degrees of azimuthal coverage, already installed and operated in the ALICE experiment. The EMCal coverage will be extended with six 2/3-size and two 1/3-size EMCal SMs to be installed during the 2013-2014 long shutdown of the LHC (LS1) to provide an additional 67 degrees of azimuthal coverage. A full size SM consists of 1,152 readout towers. An individual EMCal tower is read out with an avalanche photodiode and preamplifier mounted on the tower. The preamplifier signal is split into energy and trigger shaper channels on the Front End Electronics (FEE) [76] boards. The energy shaper signals are sampled at 10 MHz with 10-bit resolution using the ALTRO chips [77] designed for the ALICE TPC (Time Projection Chamber) [78]. Prior to digitization, each energy signal is split into a High Gain (HG) and Low Gain (LG) channel, each shaped separately, with a gain ratio of 16 to provide an effective dynamic range of 14-bits. Each FEE board provides readout of 32 towers (HG and LG).

The trigger signals of 2×2 towers are summed and transmitted to a Trigger Region Unit (TRU) module [79] where the 2×2 tower sums are digitized and processed in an FPGA [80]. The local high energy shower trigger decisions from each TRU are transmitted to an EMCal Summary Trigger Unit (STU) where they are OR’ed together to form the EMCal L0 trigger. The trigger primitive data from all TRUs are transmitted to the STU upon receipt of the ALICE L0 trigger decision where the EMCal L1 single shower and jet trigger algorithms are performed. With respect to the readout system, the TRU may optionally include the trigger primitive data in the data stream, using the same format as the FEE boards. Each full EMCal SM requires 3 TRUs and 37 FEE boards, where one FEE board is used to read out reference channels of the EMCal LED-based monitoring system.

The EMCal readout has been upgraded during LS1 to provide more than an order of magnitude decrease in the readout time per event, bringing the EMCal close to the ALICE
post-LS2 goal of 50 kHz readout for minimum bias Pb+Pb collisions. This was achieved with a modification of the EMCal readout architecture using newly developed readout concentrator modules and minor modification of the existing FEE boards, and no modification of the TRU boards or trigger system.

12.2 The EMCal readout system

12.2.1 Point to point links and SRU

In the readout system used before LS1, the readout of 640 ALTRO channels within 10 FEE boards on a single GTL bus took place sequentially, resulting in a minimum readout time of about 270 µs for EMCal. After the replacement of the GTL bus with point-to-point links between the FEE boards and the readout concentrator, the FEE readout time is reduced by reading out all of the FEE boards concurrently [81]. This solution is based on the Scalable Readout Unit (SRU) developed in collaboration with the Scalable Readout System project [82] of CERN RD51. The SRU interconnects with each FEE board through a custom daughter card which was designed for the EMCal FEE board. It provides interface compatibility between the SRU and the existing EMCal FEE board to provide the Data, Trigger, Clock, and Control (DTC) links. The DTC daughter card mainly consists of an RJ45 port, an LVDS driver, and a power switching circuit. It mounts on the FEE board by making use of existing test-point holes into which pins and sockets have been inserted, allowing the DTC daughter card to be plugged onto the FEE without soldering.

In order to retain compatibility with the existing ALICE online system and the off-line decoding software, and since the bandwidth of the ALICE DAQ system is not a limiting factor for the EMCal readout (see Sec. 12.2.3), the EMCal readout partition organization and its interfaces to the ALICE online system are unchanged, as illustrated in Fig. 12.1. Each SRU provides the two readout partitions of a full size EMCal SM. As described in [83], the SRU board integrates a TTCrx (LHC Trigger, Timing, and Control receiver) [84] which can receive trigger and timing information from the ALICE Trigger system. It also has three SFP+ ports directly connected to the FPGA’s high speed serial transceivers for serial data transport at up to 5 Gbps. One additional SFP+ port provides a 10 GbE link. For the EMCal application, one of these transceivers is used for the Ethernet connection to the ALICE DCS system, the other two transceivers are used for the two DDL links to the ALICE DAQ system. The functionalities of the DCS and SIU boards in the previous system are implemented in the FPGA firmware of the SRU.

Each SRU has 40 point-to-point links for the 40 (37 FEE + 3 TRU) boards of the two readout partitions of a full size EMCal SM. Event data, triggers, clock, and commands are transmitted over the DTC link between the SRU and each FEE board. The maximum bandwidth of a DTC link on the SRU is 2 Gbps. In the EMCal application, the bandwidth of the DTC link is conservatively limited to 20 MB/s due to the hardware capability of the rather outdated FEE FPGA (Altera ACEX 1K Family EP1k100QC208-3) and because it is sufficient to insure that the DTC link does not limit the EMCal data throughput (see Sec. 12.2.3).
12.2.2 Suppression of low gain readout

Each EMCal tower energy signal is split into HG and LG channel, and shaped separately with a gain ratio of 16. The LG channel data is used in the offline analysis only when the associated HG channel has saturated. The concept of the LG readout suppression algorithm is to check the HG signals in real time in the FEE FPGA and then omit the ALTRO readout of the associated LG channel if the HG signal is not saturated. For low energy signals, the HG channel information is sufficient. The EMCal offline analysis experience shows that it is very rare that the LG channels are needed. Therefore, the LG suppression readout algorithm can save readout time by eliminating entirely the readout of nearly half of the readout channels.

12.2.3 Implementation and test results

The above solutions have been implemented for the EMCal readout using the SRU of the CERN RD51 project, the EMCal specific DTC adapter card, and custom FPGA firmware for the FEE and SRU for the EMCal application.

Table 12.1 lists the measured average EMCal event sizes and the estimated maximum number of occupied channels in p+p and Pb+Pb collisions per readout partition. The average size of the EMCal physics events are typically less than 15 percent of the N_{max} and less than 20 percent of channels have hits in minimum bias Pb+Pb collisions.

The estimated times for each of the steps in the EMCal readout as a function of the data volume are shown in Fig. 12.2. It’s seen that the ALTRO readout time ($t_{\text{ALTRO,32}} = \sim 19.3 \mu s$) limits the readout rate to 52 kHz for the anticipated EMCal event sizes (see Tab. 12.1). Further improvement in the EMCal readout speed would require redesign and replacement of the EMCal FEE, at significant cost and effort. For event sizes larger than 3.6 kBytes, the transmit times over the existing DDL links, t_{DDL}, will limit the maximum event readout rate (see Fig. 12.2). If necessary, this limitation can be alleviated by future firmware changes in the SRU to use the available 10 GbE link (shown as solid circles), or to upgrade the DDL link speed to 5 Gbps (both under consideration in ALICE).

A plug-in DTC daughter card has been designed to preserve the compatibility with the existing EMCal hardware. During LS1, the DTC daughter cards have been mounted on all of the FEE boards and the SRU readout has been implemented and tested on all of the installed EMCal SMs. The additional EMCal SMs being installed during LS1 will be commissioned with the SRU readout.

The Low Gain readout suppression algorithm, ALTRO readout function, and the custom DTC protocol have been implemented through a FEE (and TRU) FPGA firmware upgrade. The function of the ALICE Detector Control System and DAQ Data Link boards of the previous readout system have been implemented in the FPGA firmware of the EMCal SRU to provide full compatibility with the present ALICE online system.

Full readout chain tests of the new system demonstrate a readout time of $21.4 \mu s$ for EMCal event sizes expected for minimum bias Pb+Pb collisions, which may be reduced...
with further fine-tuning of the firmware. While this is more than an order of magnitude improvement over the previous readout system, it is ultimately limited by the minimal read out time of the ALTRO chips (19.3 μs) on the FEE boards. The new SRU based readout system has already been installed on the EMCal during LS1. It nearly attains the ALICE goal for the period following the 2018 shutdown to be able to record data at the anticipated 50 kHz minimum bias Pb+Pb interaction rate. The importance of multi-event buffering to keep up with the full incoming (non-uniform) event rate is shown in Fig. 12.3. With the SRU readout the EMCal can be read out either upon the receipt of the ALICE minimum bias trigger, up to almost 50 kHz, or upon rare triggers, such as the high energy shower or jet triggers provided by EMCal, which remain available unchanged with the new EMCal readout.
12.2 The EMCal readout system

The EMCal readout system consists of several components:

- **Detector/Data/Link**
 - 16 ADCs per ALTRO, 4 ALTROs per FEE
 - ALTRO bus (1.6 Gbps)
 - **16 ADCs per ALTRO, 4 ALTROs per FEE**

Figure 12.1: The topology of the SRU based point-to-point readout system.

Table 12.1: The measured average size in bytes (N_{event}) of various types of events, and the associated number of hit channels (N_{ch}), per readout partition of the EMCal detector. The number of hit channels is $N_{ch} \approx (N_{\text{event}} - 68) \div 12$, where 68 is the number of bytes of the event header and trailer; 12 is the minimum number of data bytes per hit channel.

<table>
<thead>
<tr>
<th>Event Type</th>
<th>p+p</th>
<th>Min. Bias</th>
<th>Pb+Pb Central</th>
<th>Pb+Pb Pedestal</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{event} (Bytes)</td>
<td>1000</td>
<td>2500</td>
<td>5000</td>
<td>35.9k</td>
</tr>
<tr>
<td>N_{ch}</td>
<td>80</td>
<td>220</td>
<td>420</td>
<td>1152</td>
</tr>
</tbody>
</table>

Table 12.1: The measured average size in bytes (N_{event}) of various types of events, and the associated number of hit channels (N_{ch}), per readout partition of the EMCal detector. The number of hit channels is $N_{ch} \approx (N_{\text{event}} - 68) \div 12$, where 68 is the number of bytes of the event header and trailer; 12 is the minimum number of data bytes per hit channel.
Figure 12.2: The correlation between the readout time and the event size for the various readout steps discussed in the text.

Figure 12.3: EMCal Event rate vs Event rate for different Multi-Event Buffering values.
Chapter 13

Photon Spectrometer - PHOS

13.1 The PHOS detector

The photon spectrometer PHOS is designed to detect, identify and measure with high
resolution the 4-momenta of photons. Photon studies in heavy ion collisions require from
the detector a high discrimination power between photons and any other kind of particles,
charged and neutral hadrons or electrons.

After LS1 PHOS will have four modules, three with a full population of \(56 \times 64 = 3584\) \(\text{PbWO}_4\) crystals, and a fourth module with \(\approx 1750\) crystals. The PHOS acceptance in pseudora-
pidity is \(|\eta| < 0.13\) and each module covers \(17.8^\circ\) in azimuth angle.

The \(\text{PbWO}_4\) crystal is 18 cm long with a squared cross-section of \(22 \times 22\) mm\(^2\). It provides
20 units of radiation length \((X_0 = 0.89\) cm\). Its cross section is chosen to be comparable
with the Molière radius of \(\text{PbWO}_4\), \(r_M = 20\) mm. The scintillation light, in the visible near
UV-wavelength range, is read out by a \(5 \times 5\) mm\(^2\) avalanche photo-diode (APD) integrated
with a low-noise pre-amplifier. The calorimeter is operated at low temperature, \(-25^\circ\)C,
stabilized to \(\pm 0.3^\circ\)C. This operation mode on one hand enhances the scintillation light
output by a threefold factor and provides the required high and constant energy resolution
even for the less energetic photons and on the other hand, keeps the noise of the APD
low enough to provide a high signal to noise ratio.

The PHOS readout electronics resembles very closely those from EMCAL. In fact the EM-
CAL FE boards were originally derived from PHOS. The basic unit in the readout chain
is a FEE card (FEC) that processes and digitizes data from 32 crystals. The electron-
ics chain for a crystal comprises the avalanche photo diode (APD), a charged sensitive
preamplifier (CSP), and an analog shaper with a band-pass filter and amplifier. The
shaper delivers two semi-Gaussian energy signals with peaking time \(2 \mu\)s, one with low
gain (LG) and one with high (\(\times 16\)) gain (HG). In addition, a short energy pulse with peak-
ing time \(\approx 100\) ns is generated for the Trigger Region Unit (TRU). The LG and HG energy
signals are digitized in four ALTRO 16-channels 10-bit ADCs, giving a 14 bit dynamic
Table 13.1: Event size and the number of hits per events in one PHOS partition in different types of events during Run 1.

<table>
<thead>
<tr>
<th>Event type</th>
<th>pp</th>
<th>PbPb min.bias</th>
<th>PbPb central</th>
<th>pedestal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event size, kB</td>
<td>1.2</td>
<td>8</td>
<td>25</td>
<td>160</td>
</tr>
<tr>
<td>N_{hits}</td>
<td>8</td>
<td>70</td>
<td>220</td>
<td>1792</td>
</tr>
</tbody>
</table>

The TRU delivers L0 triggers by searching for energy clusters in a ROB mapped to a 14×8 matrix (14 FECs \times 8 signals). The PHOS TRU digitizes the quad analog sums in 20 MHz ADCs. A parallel search over all 112 of the 4×4 windows are carried out by the FPGA firmware. The L0 energy threshold is programmable. The trigger outputs from all TRUs are ORed in a Trigger OR (TOR) device. The TOR can also be programmed to deliver L1.

The PHOS electronics, with the exception of the readout units, are contained inside a gas tight volume. The FEC and TRU boards are mounted inside water cooled copper boxes. To prevent condensation of humidity inside the electronics compartment the volume is filled with nitrogen. The RCUs are mounted on the bottom shield of the module.

The average event size and the number of hits per event for pp, minimum bias PbPb and central PbPb collisions, as well as for pedestal runs without zero suppression, were obtained from data taken during Run 1. These values for one readout partition and the maximum of 64 time samples are collected in the Tab. 13.1. Note that data of pedestal runs contains all 64 time samples in all high- and low-gain channels, while in physics runs with zero suppression the high-gain channels dominate.

13.2 The PHOS readout system

The target for the upgrade is a PHOS readout time of $\approx 20 \mu$s to match a 50 kHz interaction rate in PbPb collisions. This requires a point-to-point readout topology such that all FECs can be read out in parallel. PHOS has therefore adopted the SRU DTC point-to-point links installed for EMCal and DCAL as described in the previous section. In [85] EMCal quotes a readout time of 21.4 μs measured for event sizes expected for minimum bias PbPb collisions. However, the data volume per ALTRO channel for PHOS is currently 64 time samples at 10 MHz compared with 15 time samples for EMCal.
For the SRU system the effective readout time for a given event size is determined by the largest transaction delay from i) ALTRO bus, ii) DTC link between FEC and SRU, and iii) the digital data link (DDL) between SRU and the DAQ system. This is illustrated in Fig. 13.1. The readout time can be minimized by 1) reducing the number of time bins, 2) limiting the data volume from SRU to DAQ by using fewer DTC links, and 3) using two DDLs instead of one.

![Figure 13.1: Calculated readout times for PHOS SRU configuration. Up to 9 kB/SRU the time is dominated by the ALTRO protocol. Note that the individual contributions from ALTRO, DTC and DDL are not additive.](image)

Calculations [86] show that the minimum ALTRO readout time with 64 time bins is around 25 µs. This value is reduced to ≈ 20 µs and ≈ 18 µs for 32 and 16 time bins, respectively. However, the current 64 time samples can safely be reduced to 32 because it is sufficient to sample the first ≈ 3.2 µs of the pulse which will cover both its rising edge and the maximum amplitude.

To switch to 16 time samples would require a shorter pulse from the analog shaper by changing the shaping time constant from 2 µs to 1 µs. This will have a negligible effect on the energy resolution. However, it would require a major intervention by changing a very large number of capacitors on the FECs.

Shortening the pulse length will reduce the probability of pileup in a channel. However, as shown in [87] the mean time between hits in a cell for an average PbPb event is ≈ 400 µs. With proper timing calibration, all cells can be aligned within 3 ns. It will therefore not be a problem to identify data from BCs with 25 ns spacing. Pileup effects can therefore be neglected also with the current pulse length.
The event size after the change to 32 time samples will be roughly half of that shown in Tab. 13.1.

The performance of the chosen topology is shown in Fig. 13.1, with 4 SRUs per PHOS module and using 30 out of the 40 DTC SRU links. The SRU and FEC firmware are optimized for 32 time samples per channel with Low Gain readout suppression algorithm [86]. For an event size of 8 kB/SRU, corresponding to \(\approx 110\) kB for the full PHOS detector, the theoretical readout time is 22 \(\mu\)s giving a maximum rate of around 45 kHz. The readout topology of one PHOS module is schematically shown in Fig. 13.2.

![Figure 13.2: Readout and trigger topology of the PHOS modules M2, M3 and M4. The dashed rectangle contains the FE electronics inside the module.](image)

13.3 Possible improvement of photon identification

One of the main physics goals of PHOS is the measurement of direct thermal photons. This is the only way to determine the initial temperature of the hot fireball created in high energy heavy-ion collisions at LHC.

According to the theoretical estimation [88] and preliminary measurements by ALICE [89, 90], the thermal photon signal in central PbPb collisions at LHC is to be searched for in a rather narrow \(p_T\) range of 1-10 GeV/c, and the expected excess of direct photons over background decay photons is as small as 5-10%.
The measurement of the thermal photons is a quite difficult and challenging task, since their expected signal is rather weak (a few per cent) as compared to a high physical background of decay photons from hadrons produced in the same collision. Moreover, since any electromagnetic calorimeter is sensitive not only to photons, but also to charged and neutral hadrons, the photon spectrum to be measured by PHOS at LHC is contaminated by all these signals. Preliminary studies of direct photons in PbPb collisions taken by the PHOS spectrometer in 2010 [90] show that systematic uncertainty from hadron contamination dominates in central collisions. It can be illustrated by Fig. 13.3, which shows a systematic uncertainty from hadron contamination at the level of 3-7 % at centralities 0-10 % in the that p_T range where the direct photon signal is expected. Such system-

![Graph showing systematic uncertainties]

Figure 13.3: Systematic uncertainties of direct photon spectrum in central PbPb collisions measured by PHOS.

atic uncertainty is still large and comparable with expected direct photon excess over background. Further reduction of this systematic uncertainty is possible only by stronger suppression of hadron contamination of the photon spectrum.

Photon identification in PHOS has been provided by two criteria: anti-matching of PHOS clusters with charged tracks selects neural particles, and cluster shape analysis discriminates showers developed in PHOS by electromagnetic particles (photons and electrons) from hadrons. According to the experience of the PHENIX experiment at RHIC, cut on arrival time was very useful in direct photon measurement, and the timing cut was always used in measurements of direct photon spectra [91].

The challenges in identifying thermal photons in the high background from decay photons plus signals from charged and neutral hadrons are discussed in [92]. Adding timing cut to other photon identification criteria improves hadron suppression, especially from neutrons and anti-neutrons, as illustrated in Fig. 13.4.

Depending on the time resolution, discrimination against hadrons by cluster timing is effective up to ≈ 2-3 GeV. To add significantly to the discrimination power, the resolution should be 1 ns or better at the cluster energy $E \approx 1.5$ GeV. Using pulse shape analysis in the time domain a resolution of ≈ 1.5 ns has been measured in the lab, whereas ≈ 3 ns
has been obtained from data from Run 1. At the same time, test beam measurements [93] show that the intrinsic time resolution with PWO crystals is \(\approx 0.5 \text{ ns} \) at 1.5 GeV.

To reach a value better than 1 ns will require a change of the frontend electronics. Preliminary studies have identified a possible solution based on adding a timing daughter card to the FEC. A feasibility study of such an upgrade implementation for LS2 is under way.
Figure 13.4: Improvement of discrimination against hadrons with cluster timing.
14.1 Introduction

The ALICE High Momentum Charged Particle Identification Detector (HMP) performs charged particle identification by means of the measurement of the Cherenkov angle, exploiting the momentum information provided by the tracking devices. It consists of seven identical proximity focusing Ring Imaging Cherenkov (RICH) counters. The HMP is able to provide 3 sigma separation for π/K in the momentum range $1 \text{ GeV/c} < p < 3 \text{ GeV/c}$ and in the range $1.5 \text{ GeV/c} < p < 5 \text{ GeV/c}$ for K/p that, at 2 sigma, can be pushed up to 6 GeV/c. The radiator used is C_6F_{14} ($n = 1.2989$ @ 175 nm, $\beta_{th} = 0.77$), 15 mm thick.

The photon detection is provided by multiwire chambers coupled with pad-segmented CsI photo-cathodes ($\text{CsI Q.E.} \approx 25\%$ @ 175 nm, pads size $0.8x0.84 \text{ cm}^2$). The amplification gas is CH4 at atmospheric pressure, the anode-cathode gap is 2 mm and the operational voltage is 2050 V (gain $\approx 4 \times 10^4$). The 42 photo-cathodes are segmented in 3840 pads each with individual analogue readout. The front-end electronics (FEE) and Readout (RO) are based on GASSIPLEX and DILOGIC chips, both developed within the HMPID project. The noise level is 1 ADC channel (1000 e-) whereas a single photon signal amplitude is of the order of 30 ADC channels on average. Less than 200 out of 161280 channels are dead or noisy. A detailed description of the detector can be found in [94].

HMP has successfully collected pp, pPb and PbPb data during the LHC operation period Run 1 and it has contributed as expected to the physics program measuring charged hadron spectra and ratios. The same conditions of operation are planned for the HMP during the Run 2 period, when the LHC will increase the collision energy.

After the ALICE upgrade the HMP will be able to exploit its maximum event read out rate of 2.5 kHz in central PbPb collisions, with an increasing factor of 4 w.r.t. Run 1 and Run 2 periods, when the drift time and the TPCread-out rate imposed lower rates. No CsI Q.E. degradation is expected for the upgrade operation since the estimated charge dose of 0.16 mC/cm2 will be less than 0.2 mC/cm2, which is the threshold considered where
possible ageing effects of CsI could be observed [95, 96]. With the increase of the read-out rate, the HMPID will have an event statistic higher w.r.t. to Run 1 and 2. Thus it will provide in shorter time the PID measurements for the planned physics and calibration points for the TPC, that uses the dE/dx PID, down to 4 GeV/c (minimum of the specific ionization energy loss).

14.2 Implementation architecture

The full exploitation of the HMP read-out rate at 2.5 kHz for central PbPb collisions ensures the PID for the defined upgrade physics program. No upgrade of the electronics is planned. The detector can be easily integrated in the ALICE read-out architecture as the upgraded ALICE system provides backward compatibility.

Each HMP module is read out by two optical links, on for each module side (Fig. 14.1). On each side the electronics is organised in 24 columns, with 10 front-end Gassiplex cards per column. Each Gassiplex card is equipped with 3 Gassiplex chips and the DILOGIC chip for a total of 48 channels and connected to a Multi-Chip-Module that provides channel multiplexing, ADC conversion and zero suppression. Upon L0 arrival the 24 columns are read out in parallel and the content is transferred in the column memory buffers. The L0 latency that optimizes the peaking time is 1.2 μs.

Figure 14.1: Schematics of the implementation of the FE and readout electronics on one HMPID module.

Due to the relatively smooth bell shape of the shaping preamplifier, an increase of 50% of latency brings the signal loss to 30% whereas an increase of only 100 ns of latency would bring the signal loss at $\approx 10\%$. The corresponding degradation of the Cherenkov angle resolution for a 50% of signal loss is 12% [97]. Upon L1 signal arrival the 24 columns...
are sequentially read out and the data are sent via DDL 1 to the DAQ. Extrapolating the results from Run 1 in central PbPb collisions @ 5.5 GeV at the full read out rate 25 kB/s data rate is expected. The trigger signal management is ensured by cables and the standard TTCrx card, connected to the LTU via optical fibres. The full detector operation is ensured by: 14 DDL 1 optical links, 14 RORC1 cards, 14 TTCrx cards, 14 L0 cables and 14 busy cables. For the debugging of trigger timing, one TTCit board is planned to be added. In conclusion, the HMP can take data in the upgraded system maintaining unchanged its read-out and trigger electronics.
Chapter 15

Alice Cosmic Ray Detector - ACO

The Alice Cosmic Ray Detector (ACO) produces a L0 input trigger signal to the ALICE CTP and provide precise information on cosmic rays.

ACO consist of an array of scintillator plastic counters placed on the top sides of the ALICE magnet. The current layout of the cosmic trigger on the top face of the ALICE magnet consists of 60 scintillator modules arranged in a doublet configuration. Each doublet consists of two superimposed scintillator counters and contains one front-end electronics (FEE). The signal of each of the two scintillators contained in one ACO module is applied to a leading edge discriminator and the FEE provides the coincidence signal of one ACO module from the two signals coming from the two scintillators, see Fig. 15.1. All the modules are connected to the main electronics card which processes the information to generate a single muon and multi muon trigger signals (see Fig. 15.2).

The ACO main card receives the 120 differential signals coming from the 60 FEE cards. These signals are translated to CMOS levels and sent an ALTERA FPGA. The Cosmic trigger signal is generated by combinational logic. The TTS interface is a TTC protocol. ACO is read out via an DDL1 interface (see Fig. 15.3).

Figure 15.1: ACORDE FEE Diagram.
Figure 15.2: Diagram of the 60 modules connected to the main card.

Figure 15.3: Block diagram of the ACORDE main card.
Chapter 16

Cost summary

Table 16.1 summarises the system upgrade cost. The numbers contain electronics upgrades, fiber installation and if applicable the CRU and DDL3 fibers. They are excluding the active components in the DAQ side DDL3 interface. Main uncertainties arise from the estimate of fiber installation cost.
Detector system upgrade cost [kCHF]

<table>
<thead>
<tr>
<th>Detector</th>
<th>Cost (kCHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCH</td>
<td>2806</td>
</tr>
<tr>
<td>MID</td>
<td>660</td>
</tr>
<tr>
<td>ZDC</td>
<td>194</td>
</tr>
<tr>
<td>TOF</td>
<td>750</td>
</tr>
<tr>
<td>FIT</td>
<td>1500</td>
</tr>
<tr>
<td>TRD</td>
<td>419</td>
</tr>
<tr>
<td>EMC</td>
<td>0</td>
</tr>
<tr>
<td>PHO</td>
<td>200</td>
</tr>
<tr>
<td>HMP</td>
<td>0</td>
</tr>
<tr>
<td>CTP</td>
<td>188</td>
</tr>
<tr>
<td>Total</td>
<td>6717</td>
</tr>
</tbody>
</table>

Table 16.1: System upgrade cost overview
References

[38] CMS Collaboration. The CMS experiment at the CERN LHC. *JINST*, 3(S08004), 2008.

[41] F. Boss`u et al. Performance of the ALICE RPC-based muon trigger system in the first two years of data taking at the LHC. *JINST*, 7(T12002), 2012.

2758 [85] ALICE collaboration. EMCal TDR3 and references therein.
2765 [92] ALICE collaboration. Letter of Intent, Upgrade of the ALICE PHOton Spectrometer (PHOS) for the measurement of thermal photons from QGP. 20 April 2012.
2768 [95] ALICE collaboration. Results from the ageing studies of large CsI photocathodes exposed to ionizing radiation in a gaseous RICH detector, volume A 553. 2012.
2769 [96] Long term performance and ageing of CsI photocathodes for the ALICE/HMPID detector.
2770 [97] G. Volpe. Studio di caratterizzazione del rivelatore RICH dell’esperimento ALICE al CERN,.