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 ANALYTICAL SOLUTION OF FINITE

 CAPACITY MID/1 QUEUES

 OLIVIER BRUN * AND

 JEAN-MARIE GARCIA,* **LAAS-CNRS

 Abstract

 Although the M/D/1/N queueing model is well solved from a computational point of
 view, there is no known analytical expression of the queue length distribution. In this
 paper, we derive closed-form formulae for the distribution of the number of customers in

 the system in the finite-capacity M/D/1 queue. We also give an explicit solution for the
 mean queue length and the average waiting time.

 Keywords: Finite capacity M/D/1 queues; embedded Markov chain; queue length
 distribution; mean number of customers; average waiting time

 AMS 2000 Subject Classification: Primary 60K25
 Secondary 68M20

 1. Introduction

 In the performance evaluation of modern telecommunication systems, deterministic service
 time queueing models are frequently applied for system modelling. For instance, such models
 are often used to describe the cell scale queueing problem in the ATM multiplexer. According
 to the system to be modelled, several deterministic service time models have been considered

 (see [8], [12] and [5]): M/D/1, GeoN/D/1, N * D/D/1 and C Di/D/1.
 The M/D/1 queue [6] is by far the simplest and most general model and it has a variety of

 applications not only in the telecommunication area, but also in operations research, computer
 science and many other engineering areas. This model, already studied by Erlang in 1909, is
 a queueing system with Poisson arrivals and deterministic (constant) service time. This model
 is appropriate for continuous deterministic service time queueing systems, which input can be
 seen as 'completely random' or as a superposition of a large number of processes. This follows
 from the fact that in situations with many sources, each having a small generation rate, the
 actual arrival process approximately follows a Poisson process.

 Although this model has been studied for a long time and is well solved from a computational
 point of view, there are still few explicit analytical results for the finite capacity queue (denoted
 M/D/i/N). As discussed in Section 2, apart from the special case of no waiting room at
 all (Erlang's loss model), there is no closed-form formula for the queue length distribution.
 Moreover, there is no known analytical expression of the mean number of customers in the
 system.

 In this paper, we derive closed-form formulae for the distribution of the number of customers
 in the system. We also give an explicit formula for the mean number of customers.

 Received 27 September 1999; revision received 21 February 2000.
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 Analytical solution offinite-capacity M/ID / 1 queues 1093

 The paper is organized as follows. Section 2 recalls the basic relations for M/ G/1/N
 queues. Section 3 is devoted to stationary analysis of M/D/1/N queues. We derive closed-
 form formulae for the steady-state queue-length distribution, for the mean queue length and
 the average waiting time. In Section 4, we propose an algorithm for efficiently computing the
 queue length distribution.

 2. The basic relations for M/ G/1/N queues

 The M/D/1/N model is a finite capacity queueing system, with N - 1 places in the waiting
 room. Customers arrive according to a Poisson process at rate 1. They are serviced according
 to the FCFS (First Come First Served) discipline and the service time of each customer is the
 same constant T. Customers who upon arrival see a full system are rejected and do not further
 influence the system (lost customer cleared). Since the finite waiting room acts as a regulator
 on the queue size, no a priori assumption about the utilization factor p = T is needed.

 A computational scheme for the time average probabilities Pj (N) is known for the more
 general M/ G/1/N model [10]. Denoting by Aj,k the expected amount of time that k customers
 are present during a service time that is started with j customers in the system, we get the
 following relations:

 k

 Pk(N) = aPO(N)Alk Pj(N)Aj,k, 1 < k < N. (1)
 j=1

 These relations allow recursive computation of Pi(N)/Po(N), P2(N)/Po(N),.... The
 unknown Po(N) is computed by normalizing probabilities.

 Although the M/D/1/N queue can be solved by means of the above relations, there is no
 analytical solution for the steady-state distribution.

 3. The finite capacity MID/1 queue

 In this section we derive the important parameters of an M/D/1/N queue. To this end,
 we consider the embedded Markov chain associated with the M/D/1/N queue and derive the
 queue length distribution at departure epochs. It should be pointed out that if the probability
 distribution obtained at departure epochs happens also to be valid at all points in time in the
 infinite capacity case, this is no longer true in the finite capacity case. However, the probability
 distribution at departure epochs will be used to derive the stationary probability distribution at
 all points in time.

 3.1. Embedded Markov chain

 Let XN(t) be the number of customers in the system at time t. Let tn be the date of the nth

 customer departure. The stochastic process {XN(tn))n>O is a Markov chain with state space
 {0, 1, ..., N - 1}. Hereafter, qj(tn) will denote the probability that j customers are left behind
 by the nth departure. Also, in the sequel, ck will denote the probability of k arrivals during a
 customer service. Since arrivals are Poisson distributed with rate h and since service duration

 is a constant T, we have:
 k

 k -k.e
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 1094 0. BRUN AND J.-M. GARCIA

 It is easy to show that the probability transition matrix of the embedded Markov chain,

 H = [ri,rj], takes the form [9]:

 a ai a aN-2 1 - N-2 k

 agO a a2 --- aN-2 1- -N-2ak

 0 a~ al . aN-3 1 - -3ak
 0 0 0 -- ao 1 - ao

 Moreover, it is known that the stochastic matrix H is ergodic [2]. As a consequence, the
 stationary distribution Q = [qo ...q, N-1] exists and it is an eigenvector of the matrix n, so
 Q i = Q. This implies that the stationary distribution Q verifies the following linear system:

 aoqo + aoql = go

 a qo + aolql + aoq2 = qi

 a2qo0 + 2ql + aflq2 + aoq3 = q2

 aN-20qo + N-2q1 + ' + aoqN-1 = qN-2.

 This is a linear system of N - 1 equations involving the N unknowns qo .... q-N-1. Hence, it
 allows us to express the probabilities ql .... qN-l in terms of qo. Let ao, ..., aN-l be such
 that qn = anqo for all n > 0. It is easy to see that ao = 1, al = eP - 1 and that a2, ..., aN-1
 obey the following recursion:

 n-1

 an = eP an- -- -ian-i --On-laO . (2) i=1

 Now, let (an)n>o be the infinite sequence whose first terms are ao,..., aN-l and whose
 other terms are defined by the recursion (2). Let A(z) be the z-transform of this sequence, i.e.

 oo

 A(z) = akZk.
 k=0

 Lemma 1 gives an explicit formula for the generating function A(z).

 Lemma 1. The generating function A(z) takes the form A(z) = (1 - z)B(z), where B(z) =
 1/(1 - zep(i-z)

 Proof The recursion scheme (2) implies that

 OO OO) OO) OO

 Sanzn = n 0znz +L ~ a naiZn+i- n=0 n=0 i= 1 n=0

 that is,

 n! n=OA(z) = aoe ai n=O n n=0 i =1 n=0
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 Analytical solution of finite-capacity MID/ 1 queues 1095

 Hence

 ep(z-l)
 A(z) = aoep(z-l) + - (A(z) - ao), z

 which leads to
 1-z

 A (z) =
 1 - zep(1-z)

 Now, let (bn)n>O be the coefficients of the z-transform B(z). Proposition 1 provides a
 closed-form expression for these coefficients.

 Proposition 1. The coefficients an are given by ao = 1 and, for n > 1, an = bn - bn-1, where
 bo = 1 and, for n > 1,

 n. (-l)k bn = (n - k)k e(n-k)P pk
 k=O

 Proof We have

 anzn = Zbnzn - z bnzn,
 n=0 n=0 n=0

 hence

 anz = bo + (bn - b,-)z
 n=0 n= 1

 which proves that ao = 1 and that an = bn - bn-1 for all n > 1. We now turn to the second
 part of the proof. Let us define the z-transform F(z) as follows:

 F(z) = ( (n - k)ke(n-k)p pk zn"
 n=0 k=0

 Thus

 Zm z F (z)=ZZmkemppkzkzm.

 k=0 m=0
 Since

  mk k k e-mpz
 m=O

 we have that

 F(z) = emp(1-z) zm.
 m=O

 The series F(z) converges if IeP(l-z)zI < 1. In particular, if Izl < 1 we have the following
 explicit expression for the z-transform F(z),

 1
 F(z) =  1 - zep(1-z)

 and thus we find that F(z) = B(z) which proves that bo = 1 and

 = k (n - k)ke(n-k)ppk Vn > 1.
 k=0
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 1096 O. BRUN AND J.-M. GARCIA

 Remark 1. Letting Pk(t) = ((Xt)k/k!)e-xt, we have the following simple expression for the
 coefficients (bn )n>o:

 n

 bn = ZPk((k- n)T), Vn > 0.
 k=0

 We can now derive an explicit expression for the steady-state probability distribution at
 departure epochs.

 Lemma 2. At equilibrium, the probability distribution Q = [qo, ... , qn] of the number of
 customers left behind by a departure is given by

 1 bn - bn-1

 qo-- , qn = n = 1,..., N - 1. bN-1 bbN-1

 Proof The probability normalization implies that yU_ q0k = 1. Thus, 1 1

 kN - ak - bN-1

 and, moreover,
 bn - bn-1

 qn = anqo = n = 1 ..... N - 1.
 bN-1

 3.2. Steady-state probability distribution

 It should be pointed out that in the finite capacity case, the steady-state probability distribution

 Q of the number of customers left behind by a departure differs from the queue length

 distribution P = [Po(N),...,PN(N)] in the M/D/1/N queue. However, in the case of
 M/G/1/N queues, it is known that the following relation holds [2]:

 Pj(N)
 S= 1- PN(N)

 Using this relation the following theorem states our main result.

 Theorem 1. The probability distribution of the number of customers in the system is given by

 1
 Po(N)=

 1 + pbN-1
 bN-1

 PN(N) = 1- (3) 1 + pbN-
 bj - bj_1

 Pj(N)= j= 1,..., N-1. 1 + pbnr_1

 Proof We have
 Pj(N)

 qj= j=0,...,N-1. (4) 1 - Py (N)~

 A simple conservation law implies that

 1
 X(1 - PN(N)) = -(1 - Po(N)).  T
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 Analytical solution of finite-capacity M/D/1 queues 1097

 Thus
 1

 1 - PN(N) = -(1 - (1 - PN(N))qo).
 P

 Together with qo = 1/bN-1, this leads to

 bN-1
 1 - PN(N) = (5)

 1 + pbN-1

 Other probabilities are derived using (4).

 Using Theorem 1, it is straightforward to find the mean number of customers XN in the

 M/D/1/N queue.

 Theorem 2. The mean number of customers of the M/D/1i/N queue is given by

 cZ~td bk
 X N = N- 1p bk (6)

 1 + pbN-1

 Proof Since
 N

 XN = kPk(N)
 k=0

 we have

 Z _j' k(bk - bk-1) - NbN-I1 XN = N+
 1 + pbN-1

 The expected result is then obtained after some algebra.

 Theorem 3. The mean waiting time WN in the M/D/1/N queueing system is

 pbN-1 WN(CN-l)T

 Proof Let TN be the average system time. Application of Little's law yields

 XN = h(1 - PN(N))TN.

 Using (5) and (6),

 1 1 + pbN-1 N + NpbN-1 - >9 - obk TN = -__
 A. bN-1 1 + pbN-l1

 and thus

 WN = TN - T = (N- I - bk N)T.
 N--l k=pbhr_1bk-N
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 1098 0. BRUN AND J.-M. GARCIA

 TABLE I: Comparison between the numbers of operations involved in each algorithm.

 Operations Our algorithm Algorithm (1)

 + N(N - 1) ?N(N + 3)
 - 2N N2

 ? ?N(N + 3) ?N(N + 7)
 / N N(N + 3)

 4. Algorithmic issues

 In this section, we propose an algorithm for efficiently computing the queue length distri-
 bution. This algorithm is compared to the one using the relation (1).
 The algorithm is based upon relation (2) which allows an efficient computation of the

 coefficients an once the constants ack have been computed. This relation can also be used
 to compute the coefficients bn, since bo = ao and, for k > 1, bk = k=0 ai. The queue length
 distribution then follows using (3).
 Table 1 proposes a comparison between the number of operations involved in this algorithm

 and the number of operations involved in the algorithm (1). It is worthwhile noticing that the
 number of divisions is of magnitude N2 in the algorithm (1) while it is only of magnitude N in
 our algorithm.

 5. Conclusion

 In this paper, we have derived a closed-form formula for the distribution of the number of
 customers in the finite-capacity M/D/1 queue. We also gave an explicit solution for the mean
 queue length and the average waiting time. In [1] it is shown that all derived results for the finite

 buffer queue are in agreement with those already known for the infinite buffer queue when the

 queue size grows to infinity.
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