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A formalism is developed to allow the common treatment of dead time in multistage data acquisition systems under differing
assumptions on the processing time distribution . The formulae derived are used to compare dead times assuming random and
constant distributions of processing time.

1 . Introduction

It seems clear that for the foreseeable future collid-
ing-beam accelerators at higher and higher centre-of-
mass energies will dominate the subject of high-energy
particle physics . The experiments being developed for
the accelerators presently under construction, such as
LEP, HERA, SLC and the Tevatron Collider, and those
proposed for possible future machines such as the SSC,
are almost all large, general-purpose detectors with many
thousands of electronics channels . The triggering and
data acquisition (DAQ) problems associated with these
large experiments are extremely complex, and careful
design and modelling of these systems is essential if the
desired performance is to be achieved at an affordable
price [1] . Among the experiments presently under con-
struction, the HI [2] and ZEUS [3] experiments under
construction for HERA have a particularly difficult
problem in that the extremely short separation of 96 ns
between bunches means that the data must be stored for
several beam crossings until a first-level trigger (FLT)
decision can be made . The ZEUS experiment, for exam-
ple, proposes to deal with the large quantity of data
output by the Central Tracking Detector by having
significant processing power on the front-end electron-
ics as well as at the higher levels of the system [4].
Further buffering is required at each level to allow
sufficient time to process the events and bring the
trigger rate down to a sufficiently low level to be
recorded on tape .

It is clearly of vital importance to be able to calcu-
late the dead-time losses at various points in multi-
buffering, parallel-processing environments such as the
above in order to optimise the processing power and
number of buffers at each stage. Existing literature on
dead-time estimation, in the context of dead times due
to instrumental effects in counters and electronics [5,6],
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does not consider systems with buffering . However, it
has long been realised in high-energy physics that statis-
tical queueing theory [7] can be applied to the problem,
and a "standard formula" for the dead time as a
function of buffer capacity is widely known [1] (see
section 4 below) . It is often forgotten that this standard
formula in fact depends on assumptions about the
distributions of event arrival times and processing times
in the system . In this paper we develop a notation
which allows different assumptions on the statistical
distribution of processing times to be treated within the
same formalism. We have attempted to derive the re-
sults presented here from first principles, assuming no
familiarity with the subject, and considering in detail
only the cases which are of interest in high-energy
physics. In particular results are presented for the case
of constant processing time, which is likely to be more
applicable to front-end processors, used for the compac-
tion of large amounts of sparse data, than the usual
assumption of a random processing-time distribution .
In section 2 we develop the required notation, while in
sections 3 and 4 it is applied to two particularly useful
assumptions on the processing-time distribution . Sec-
tion 5 examines some results from this formalism and
contains the conclusions .

2. Development of the general formalism

We consider a two-level trigger scheme in which the
first-level trigger accepts events with a rate R and the
mean second-level processing time is z. Buffer space for
N events, in addition to the event currently being
processed, is to be provided at the input to the second
level. We assume that the time required for the second-
level processors to process a particular event is unaf-
fected by the operation of the first-level trigger and
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buffer system. We wish to calculate the dead-time frac-
tion for this system as a function of N, which we denote
by dN . For N = 0, i.e ., where there is no multiple
buffering, a dead time is associated with each FLT
equal to the time required for processing at the second
level . This clearly places a requirement on the second-
level processing that the mean time required to process
an event must be only a small fraction of the mean
interval between incoming events in order to avoid large
dead-time losses . We write x = RT and the dead-time
fraction associated with second-level processing is then

or
x

d°
_
I+x'

We now consider a system which has multiple
buffering, allowing incoming FLTs to be queued for
later servicing while the second-level trigger (SLT) is
processing previous FLTs . If the number of events
which can be queued in this way is infinitely large, or
the maximum allowed queue length infinite, the mean
time for second-level processing can be as long as the
mean interval between FLTs without incurring dead-
time losses . If the processing time is longer the queue
will grow without limit, and the FLT processing will
eventually have to be switched off for some fraction of
the time to allow the SLT to catch up . In terms of the
parameter x = RT, the fractional dead time for infinite
buffer capacity is, therefore,

Where the buffer capacity, or maximum event-queue
length, is finite, however, additional dead time will
occur when an event arrives which saturates the queue.
In this case the FLT is not re-enabled until the comple-
tion of processing of the event currently being serviced
by the SLT, which frees buffer space for the acceptance
of a new event. Since in particle physics we are inter-
ested in maximising the allowed processing time for a
given input trigger rate (i .e . in working close to x = 1),
we would like to know what buffer capacity approxi-
mates sufficiently closely to the infinite case discussed
above, so that we require an estimate of the fractional
dead time due to second-level processing as a function
of x and of buffer capacity N. As the process is clearly
statistical in nature, its analysis will in general require
consideration of the distributions both of arrival times
of FLTs and of second-level processing times . The FLT
arrival-time distribution will be random in most cases,
but different distributions of processing times can be
envisaged . In the following we assume that the FLT
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processing remains active, so that events will continue
to arrive, so long as at least one buffer is available, and
consider the behaviour of the second-level processors .
When the processing of an event finishes and further
events are queued, the next event is removed from the
queue and input to the SLT. If the queue is empty, the
second-level processors are idle until the next FLT
event arrives at the input . Suppose that each time an
event is input to the processors, the queue length m is
recorded . The value of m will vary from 0 up to N- 1
since, although the maximum length is N, one event will
have been removed from the queue immediately before-
hand . By the time the next event is input to the
processors, the queue length will be between m - 1 and
N- 1, depending on the number of events which have
arrived from the FLT during the processing of this one
event . We denote by a j the probability for j events to
arrive, which may be derived from the arrival-time and
processing-time distributions . These probabilities there-
fore determine the probability for observing a particular
sequence of values of the length m as successive events
are input to the SLT . In the following, we will use this
fact to relate the frequencies with which the different
possible values of m are observed, and hence find the
dead time fraction dN .

The total rate of processing events in the SLT is the
sum of the numbers of events per unit time where the
queue length observed at the start of processing takes
all possible values . Let the rate at which a particular
length m is observed be rm . For an event where the
value m is observed, the queue length at the start of
processing of the previous event must have been m + 1
or less, giving for the different rates r�, the relationship

m+1
rm	Y_ a .rm-+1

j=o

The case of m = 0 has to be considered separately . This
value is observed following an idle period, as remarked
above . The rate of occurrence of such idle periods is
given by r° times the probability that no evident arrives
from the FLT during processing, which gives rise to the
last term in the expression

ro =a° r1 +a1ro +a oro .

	

(2)

The fraction of time for which the processors are idle is
a ° r°/R ; the set of N equations for the r�, is completed
using the condition that the total time is made up of
processing time and idle time,

N-1
aR0 +T

	

rm =1,
m=0

where T is the mean processing time per event as
before, or

N-1
aoro +x Y_ rm =R .

m=0



Since the total second-level processing rate must be
equal to the input rate, after correction for dead time,
we have

N_1
R(1 - dN) = E r�,

	

(4).
m=0

Eqs. (3) and (4) give the dead time fraction dN in terms
of the rates rm as :

N-1~m=0rm
dN

- 1 -
N-1a,r0+ xEm=0rm

Eqs. (1) and (2) may now be combined in the form
m

Sm - ~ ajS.-j+1,

	

m=1, 2, . . . N-1
j=0

m

SN
dN=1

	

1 +xSN .

as before .

3. Random arrival time, constant processing time
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At this point it is convenient to define a new sequence
of terms Sm by

1 m-1

Sm =-

	

r.,

	

(6)
a0ro j=0

and rearranging, we obtain for Sm the recurrence rela-
tion

a0Sm+1 = Sm - Y_ ajsm_j+l .
j=1

In terms of the Sm , eq. (5) for dN now becomes

From the definition (6) it is obvious that S° = 1/a° , so
that the recurrence relation (8) may be used to find SN
and hence dN for any set of aj . To apply the formalism
for the trivial case of N = 0 requires the value of S°
which is so far undefined. However if we require eq . (7)
to hold also for m = 0, this gives S° = 1 and so

x
d°
_
l+x'

We now proceed to use the above formalism to solve
for Sm and therefore the fractional dead time using eq.
(9) for the case of constant processing time. Since the
analytic solution for this case is difficult to find in the
literature, we give the derivation in some detail . The aj
distribution of the number of events arriving during
processing is just the Poisson distribution

aj'onst = e- xl

	

(10)
l

	

jl

The first few solutions Sm may be derived by repeated
application of the recurrence relation (8) ; S1 = 1/a ° =

ex , Sz =ezx (1 - x ex), and so on . We have found by
inspection that these solutions are described by the
general form

Sm = emxP.(Y),

where Pm is a polynomial in y= -x e-x,

The proof that eqs. (11) and (12) give the
solution for all m proceeds by the method of induction.
We substitute eqs. (10) and (11) into eq . (8) to give

m
mx

	

- -P - Y xj (m-j)xe

	

Pm+1 - e

	

m

	

jl
e

	

Pm_j+1,
j=1

- ( -Y)lPm+1 = Pm

	

l-1

	

jl

	

PM-i+ 1 .

Now we rewrite eq . (12) to give

M_' (m-J-i+1)'yi
Pm-j+1 i .i=0

and substituting this into eq . (13) gives

Pm+l -Pm -	iljl
j=1 i=0

m

	

m-l

	

i +j

j=1 i=0 t .J .

Rearranging the double sum
k - i +j leads to

Pm+1 = Pm - Ik=1 k .

1=1 il(k-i)!

The second sum now looks like a binomial expansion,
except that it should extend from i =0 to k. We can
therefore write

Pm+1 = Pm - Y_ Y1 [(m- k)k-(m-k+l)k],
k=1 k

and on substituting for Pm from eq. (12), most of the
terms in (m - k )k cancel, leaving

`" (m-k+l)ky k
Pm+1= kl

+1-0,
k=1

terms with k = 0, m, respectively, or
m (m-k + 1)kyk
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(12)

correct

(13)

to group terms of the same

where the last two terms are the remaining (m - k)k
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as required, which completes the proof. The solution for
S,� is therefore

Sconst =emx
mt

(m-j)~(- X
e-x)J

m

	

JE~

	

j l

4. Random arrival time, random processing time

Another useful model for the processing times is to
assume that they are randomly distributed (i .e . ex-
ponentially distributed with mean T) . To find the a, in
this case we convolute this Poisson distribution for the
number of events arriving in a time T', which has a
mean of x'= RT', with an exponential distribution for
x' :

~C
xx j

e
-"( l +x~x) dx

x o J t

The expression for S,�an can be shown to be

Sran =

	

xÎ

	

x=
m

	

1-x
j-0

by
expression [1]

d ran xN+]1// -x )
=

	

.
1 -x, N,+2

5. Results and conclusions
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(14)

(15)

induction, giving the "standard" queuing theory

(16)

The variation of d n and the expression for con-
stant processing time dN n5t with x is shown in figs . 1
and 2 respectively for x values from 0 to 2 and various
N. The curves for do and dx are also plotted for
comparison . The qualitative behaviour of the two func-
tions is similar, although for constant processing time
the ideal case of infinite buffer capacity is approached
significantly faster with increasing N. The two expres-
sions are compared directly for N= 3 in fig . 3, from
which it will be seen that in the region of x= 1, d 3'0"' is
around half of dean ; the values for x = 0.8, for example,
are d3

nst = 5.9%, d3a" = 12.2% . The generally accepted
conclusion based on the expression for random
processing time is that a modest buffer depth of 3 or 4
events is sufficient to allow processing to take up to
80-90% of the available time without introducing large
dead-time losses . It can be seen from the above results
that this is certainly also adequate for the case of
processing times which are more nearly constant.

x
Fig. 1 . Variation of fractional dead time d,v with rate parame
ter x for different values of N for a random processing-time

distribution.

Some general conclusions on the design of triggering
and DAQ systems can be drawn from the results pre-
sented here . The formalism developed allows a realistic
treatment of dead times in multibuffered systems for a
variety of assumptions on the distribution of processing
times. Indeed the dead time equations can in principle

2
x

Fig . 2. Variation of fractional dead time d,v with rate parame
ter x for different values of N for a constant processing-time

distribution .
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Fig . 3 . Comparison of d3 for the two processing-time distribu-
tions.

be solved, either analytically or if necessary by numeri-
cal methods, for any form of the processing-time distri-
bution . This treatment gives a means of estimating for a
given DAQ configuration the necessary buffer depth or
the best way to trade off buffers against processing
power. A general and well known conclusion which can
be made irrespective of the distribution of processing
times assumed is that if the input rate to any level is
significantly in excess of the value assumed in optimis-
ing the buffering, very large dead-time losses occur.
Thus it is essential that the trigger reduction factors
quoted for each level in a DAQ system are realistic .
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In the next generation of hadron-hadron colliders,
such as SSC or LHC, the beam crossing rates and
luminosities are extremely large, leading to very large
interaction and trigger rates as well as enormous quanti-
ties of data [8] . Analytic results such as those derived
here should facilitate the design of trigger and DAQ
systems for experiments at these machines by allowing
quick checks of dead times for various configurations .
However, an important proviso is that although the
formulae derived here can be used to estimate the
fractional dead time for each processing stage treated in
isolation, the details of interactions among the different
stages may lead to modifications and correlations of the
arrival-time distributions at these stages . It is extremely
difficult to treat these correlations in an analytic form .
In order to obtain reliable dead-time estimation in a
multi-stage DAQ system, a realistic Monte Carlo simu-
lation should be set up, as for some of the LEP experi-
ments, to model the full DAQ system architecture .
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