

Intro to Triggering

R. Lietava

The University of Birmingham

Cambridge Dictionary

Trigger in HEP

Particle Physics Experiments

Different experiments have very different trigger requirements:

- Fixed target
 - No trigger : Geiger, photo-emulsions, cloud/bubble chambers
 - Trigger: electronic detectors
- Colliders
 - Electronic detectors
- Cosmic

Lectures

- ~ 4 lectures
 - Introduction
 - Generic detector
 - NA57 example
 - Collider: LHC ALICE example
 - Fixed target experiment:
 - NA62

Lectures:

http://epweb2.ph.bham.ac.uk/user/lietava/triggerlectures/index.html

Content

- Particle experiments
- Why we need trigger
 - Bubble chamber
 - Interaction rate (LHC)
 - How much data ?
- What to trigger on ?
- How to trigger ?
- Comparison
 - Atlas/CMS/LHCb/Alice

Why Trigger et all ?

- Bubble chambers operated for many years and generated several Nobel Prizes, yet are not suitable for triggers at all
- How did they do it?

Brookhaven 80" Hydrogen Bubble Chamber (Courtesy of National Museum of American History)

Discovery of Omega (1964)

Why Trigger et all ?

- Bubble chambers operated for many years and generated several Nobel Prizes, yet are not suitable for triggers at all
- How did they do it?

Brookhaven 80" Hydrogen Bubble Chamber (Courtesy of National Museum of American History)

Discovery of Omega (1964)

Taking photographs !

Outcome

- Without any triggering (except in the sense of cycling the chamber in a way which synchronizes with the beam extraction) a bubble chamber gives you, on average, about 1 interaction per second.
- Assuming 50% down time (a bit pessimistic) gives about 300k events per week.
- Satisfactory for minimum bias ("total cross section") studies
 - Higher interaction and readout rates needed => electronic experiments

LHC Interaction Rate: Machine x Physics

Interaction rate $R = L \times \sigma$ Luminosity $L = 10^{34} cm^{-2} s^{-1}$ Inelastic cross section $\sigma = 100mb$ R = 1GHz

 $L \sim \frac{f \times n \times N^2}{c}$ f – revolution frequency n – number of bunches *N* – number of protons in bunch S – bunch transverse cross section

Why trigger: how much data ?

Data per year $V = R \times v \times T \times n$ Event size $v \sim 2MB$ Time (10 months) $T = 2.6 \times 10^6 s$ Number of experiments n = 4 $V = 10^{23}Bytes/year$

Why trigger: how much money?

Data per year $V = R \times v \times T \times n$ $V = 10^{23}Bytes/year \sim world data storage$ Google cost c = 4GBP/1TB/monthCost per year $C = V \times c \times 12 = 5 \times 10^{12}GBP$ CERN budget: 10^9CHF

Expenses by Scientific and Non-Scientific Programmes

Final 2016 Budget (Personnel, Materials and Interest & financial costs)

2023 numbers

Why trigger: how much data can we effort?

CERN Data Centre passes the 200petabyte milestone *by Mélissa Gaillard*

LHC data/year = $10^{23}B$ 280 PetaBytes (2019) = $2 \times 10^{17}B \Rightarrow$ reduction factor $\sim 10^6 \Rightarrow$ **TRIGGER**

On 29 June 2017, the CERN DC passed the milestone of 200 petabytes of data permanently archived in its tape libraries. Where do these data come from? Particles

General schema

General schema

- ATLAS/CMS
 - Higgs
 - New physics
- LHCb
 - Rare decays
 - CP violation
 - ALICE

– QCD

ATLAS/CMS

- Higgs
- New physics
- LHCb
 - Rare decays (b,c)
 - CP violation
 - ALICE

– QCD

- ATLAS/CMS
 - Higgs
 - New physics

LHCb

- Rare decays (b,c)
- CP violation
- ALICE
 - QCD

- ATLAS/CMS
 - Higgs
 - New physics
- LHCb
 - Rare decays (b,c)
 - CP violation
- ALICE – QCD/ QGP

How to choose ?

Identify different particles produced:

- Photons: Electromagnetic calo (ECAL)
- Electrons: Tracker+ECAL
- Hadrons:
 - Charged: tracker+ECAL+Hadron Calo (HCAL)
 - Neutral: HCAL
- Muons: tracker+ECAL+HCAL+muon chambers
- Neutrino: none

Triggering detectors

- Triggering detectors
 - Fast trigger signals
 - Every triggering detector has full readout also
 - Small amount of data
 - Segmented enough
- Technologies:
 - Calorimeters: ECAL, HCAL
 - Scintillators
 - Gas detectors:
 - Resistive Plate Chambers (RPC)
 - Thin Gap Chambers (MWPC)
 - Drift tubes
 - Cathode strip chambers
 - Gas Electron Multiplier (GEM)

Trigger selection

Combining information from detector elements and different detectors:

- Isolated Photon
- Isolated Electron
- Isolated Muon
- Jet
 - –τjet
 - Heavy flavour jet
- Missing energy

Trigger selection

Combining information from detector elements and different detectors:

- Isolated Photon
- Isolated Electron
- Isolated Muon
- Jet
 - –τjet
 - Heavy flavour jet
- Missing energy MET

Trigger menu

- Physics triggers
 - Most of the bandwidth
 - Additional triggers (downscaled)
 - Needed in Analysis
 - Efficiency
 - Background
 - Calibration triggers
 - Monitoring triggers

ALICE Trigger Menu

Trigger menu 2017 for pp 13 TeV

Interaction rate ~150 kHz (V0and), ~190 kHz (inelastic)

Class	Description	Cluster	RO rate	
CINT7	0V0A & 0V0C = INT7 (ds ~ 0.2%)	CENT	150 Hz → 100 Hz	
сунмуом	VOA high multiplicity (~0-0.24% of the INT7 cross section)	CENT	115 Hz	
COTVX	T0 vertex for lumi monitoring (ds ~ 0.2%)	CENT	-	CENT li
C[E D]MC7[E D]G1	E/Dcal L0 >2.5 GeV + L1 gamma > 9 GeV	CENT[NOTRD]	19 Hz	CENTN MUFAS
C[E D]MC7[E D]J1	E/Dcal L0 >2.5 GeV + L1 jet > 20 GeV	CENT[NOTRD]		
C[E D]MC7[E D]G2	E/Dcal L0 >2.5 GeV + L1 gamma > 4 GeV, ds=~12%	CENT	12 Hz	L1r bus
C[E D]MC7[E D]J2	E/Dcal L0 >2.5 GeV + L1 jet > 16 GeV, ds=~12%	CENT		
CPHI7	PHOS L0 > 4 GeV	CENT[NOTRD]	11 Hz	
CCUP25	Diffractive gap (!V0 & 0STG & TOF)	CENTNOTRD	53 Hz	
CCUP13	Diffractive gap (!V0 & 0STG), ds~0.5%	CENTNOTRD	3 Hz	
CINTHQU	TRD L1 quarkonia: pt > 2 GeV, PID > 130	CENT	50 Hz	
CINTHNU	TRD L1 nuclei: PID > 207 - 239		(@14 kHz	
CINT7HJT	TRD L1 jet: >=3 tracks with pt > 1.5 GeV/c		inspection)	
CMSL7	Single muon low-pt (0.5 GeV/c), ds~6%	MUFAST		
CMSH7	Single muon high-pt (4 GeV/c)	MUFAST	350 Hz	
CMLL7	Dimuon like-sign low-pt (0.5 GeV/c), ds~10%	MUFAST		
CMSL7	Dimuon unlike-sign low-pt (1 GeV/c)	MUFAST		
C[E D]MC7M[SH UL]	E/Dcal & dimuon US, E/Dcal & single muon high-pt	ALLNOTRD	8 Hz	
C[E D]MC7MSL	E/Dcal & single muon low-pt, ds ~10%	ALLNOTRD		
CMUP6	Forward UPC	MUFAST	10 Hz	

Monitoring

CENT livetime 40% CENTNOTRD livetime 54% MUFAST livetime 88%

L1r busy from TRD inspection ~4%

Efficiency

5

Total read-out rate of TPC ~400 Hz

ATLAS Trigger Menu

Trigger Efficiency

- Efficiency should be precisely known
- The capability of the selection depends on resolution of quantity we cut on
- Efficiency can evolve with time

ALICE Emcal Trigger rejection factor RF

How to trigger ?

- Trigger system
 - Electronic devices: ADC, Discriminator, FIFO
 - BUSY and Dead time
 - Derandomisation/Pipelines
 - Collider mode
 - Multilevel trigger
 - High Level Trigger (HLT)

Detector: Calorimeter

Coincidences

- Given that the pulses we deal with are very short (typically 20-50 ns) the use of coincidences has a dramatic effect on reducing background noise.
- Conversely, the noise from an OR circuit can become very large, and each element has to be monitored carefully.

The accidental coincidence rate for a pair of counters is given by

 $R_{\rm acc} = 2R_1R_2\tau_{\rm res}$

where R_1 , R_2 are the rates of the two counters, and $\tau_{\rm res}$ is the width of the

pulse.

EXAMPLE

Suppose we have two counters giving 25 ns pulses and with random rates of 1000 Hz and 1500 Hz respectively (quite noisy).

The output of a coincidence would give

 $2 \times 1000 \times 1500 \times 25 \times 10^{-9} = 0.075 \text{ Hz}$

(note that this calculation assumes the counters can fire in a continuous space. Although the same principle applies, a slightly different calculation is needed when the counters can only fire at fixed times, as for example in a clocked collider experiment.

Deadtime and Efficiency

- Definitions:
 - Interaction rate: f
 - Dead time: au
- Frequency of successful triggers, e.g. DAQ rate f_D :

NA57 example

NA57 example

- The NA57 experiment, a heavy ion experiment designed to measure strange particle production in pBe and Pb-Pb collisions, illustrates many of the ideas we have introduced so far.
- The experiment ran from 1998 to 2001. It was used to test many ideas later implemented in the ALICE experiment, and represents a transition from the "old-style" approach with modular NIM based electronics to purpose-built triggers.
- In the pBe mode (shown) the trigger had to select events where at least two tracks entered the Silicon telescope. This was done by looking at pulse heights in two scintillators, and requiring both to be consistent with two tracks. (Requiring this in one only would not be sufficient owing to the long Landau tail in the pulse height distribution.)
- The beam rate was about 10⁷ protons per SPS burst, and the trigger rate about 1800 per burst.
- Trigger was implemented in two ways:
 - Nuclear Instrument Module (NIM) based trigger
 - Electronic board

NA57 example

NA57 Trigger Logic NIM

NA57 Trigger Logic VME

Derandomisation

- Efficiency versus ratio of interaction rate to DAQ rate for different FIFO length (depth):
- $-f\tau > 1$:short FIFO

- $-f\tau \ll 1$: too long FIFO (over designed)
- $-f\tau \sim 1$:optimal FIFO

Simple Trigger/DAQ Collider mode

Simple Trigger/DAQ Collider mode

Multilevel trigger

High Level Trigger (HLT)

ATLAS Trigger/DAQ system

ATLAS Trigger/DAQ system

CMS Trigger/DAQ system

- 2 trigger levels
- Level-1 hardware
 - 4 µs latency
 - 100 kHz output rate
- Event building at full
 L1 rate
- Output rate: average 1 kHz
- Event size:1.5 MB

LHCb Trigger/DAQ system (Run2)

- 2 trigger levels
- Level 0:
 - 4 usec latency
 - 1MHz output
 - L1: look at displaced high pt tracks
- HLT full event reconstruction
- Output rate: 12.5 kHz
- Event size: 70 kB

LHCb Trigger/DAQ system (Run3)

NO Hardware triggers:

- all detectors read-out data at 40 MHz with maximum30MHz interaction rate

ALICE Trigger/DAQ system (Run2)

- 3 HW trigger
 levels + HLT
- Latency:
 - L0:1.2μs
 - L1: 6.5 μs
 - L2: 88µs
- Output rate:
 500Hz
- Event size: 7-26MB

ALICE Trigger/DAQ system (Run2)

ALICE Trigger/DAQ system (Run3)

NA62 (K+->pi+nu+nu)

Summary

- Basic trigger/DAQ concepts introduced
- Trigger system summary
 - High efficiency
 - No bias on physics results
 - Event losses must be low and measurable
 - Large reduction of rate
 - Affordable
 - Time and money
 - Robust
 - Trigger is mission critical system
 - Flexible
 - Understanding of physics is evolving
 - LHC is improving ..

Lectures

- R.Lietava: http://epweb2.ph.bham.ac.uk/user/l ietava/triggerlectures/index.html
- N. Ellis: Proceedings from the 5th CERN-Latin American School of High-Energy Physics, 15 - 28 Mar 2009, Colombia, CERN Report Number CERN-2010-001
- M. Wielers, RAL, Trigger and DAQ lectures, 02/11/2016
- <u>https://warwick.ac.uk/fac/sci/physics/mpags/mod</u> <u>ules/particle/trigger</u>: to be updated
- F.Pastore, RHUL, An Introduction to trigger systems

ATLAS Trigger/DAQ system

- 2 trigger levels
- Level-1 HW
 - 2.5 usec latency
 - 100kHz output rate
- HLT: L2 and EF in one farm
 - Output rate:~ 1 kHz
 - Event size: 1.5-2 MB

CBM Readout Concept

