Last Lecture: e^+e^- ... An Introduction to LEP

Today's Lecture: More on e⁺e⁻ Facilities ...

- Finish LEP
- B factories
- The future

Reminder: Basics of LEP-II Physics

- LEP-1.5 (1995-1996) CMS energy 130-140 GeV
- LEP-II (1996-2000) beam energy 130-209 GeV
- Increased energy to study WW pairs and look for new physics

- Still none of the discoveries hoped for ⊗
- but maybe a sniff of the Higgs (see `ALEPH 4jet events')
- Complementary Standard Model information
- With TeVatron data, gives precision M_W , M_H constraints etc (see e.g. LEP Electroweak Working Group)

A W⁺ W⁻ LEP-II event (OPAL)

Can you interpret this event?

Another W⁺ W⁻ LEP-II event (OPAL)

Can you interpret this event?

One More W⁺ W⁻ LEP event (OPAL)

An exciting LEP-II Event (ALEPH)

<u>"Golden" 4-jet event</u> (ALEPH, 14/06/00, 206.7 GeV)

Two jets combine to give Z mass. Secondary vertices in other two jets suggest b bbar, large mass ... unlikely to be a Z decay

 e^+ $e^ Z^0$ H^0 D

ALEPH saw several such events ... cHiggs signal!?! Mass 114 ± 3 GeV

Was the Higgs seen at LEP-II?

"I won't believe a word if it's only seen at one experiment!" $\int \frac{u(\varepsilon)}{\varepsilon^{2}} \sin^{2} \Theta_{b} d\varepsilon \int ds (s - M_{\varepsilon}^{2}) \overline{\sigma} (e^{t} \overline{e}^{-} \rightarrow M_{H}) \int \frac{\Lambda^{d+\overline{u}}}{\Theta^{u}}$ $- \overline{\Sigma} e^{\frac{2\pi}{\varepsilon} \Theta^{2}} \frac{\prod_{x}^{2}}{(s - M_{\varepsilon}^{2})^{t} + \prod_{x}^{T}} \frac{x_{s}}{\overline{u}} e^{\frac{2\pi}{\varepsilon}} \frac{W_{s}}{\overline{u}} e^{\frac{2\pi}{\varepsilon}} \frac{16R^{2}}{R^{2}}$ $- \int \int \frac{d}{d\varepsilon_{u}} \frac{q}{R^{2}} \frac{g(x_{\varepsilon}, x_{s}, \mu^{2})g_{\mu\nu} e^{-\frac{\pi}{\varepsilon}}}{d\mu^{2}} \frac{d\mu^{2}}{d\mu^{2}}$ $+ \frac{\overline{\prod}}{\overline{u}} (x_{x} | v_{\mu} > (T_{\mu} (n - Y_{s})) \frac{1}{\overline{e} - x}$ $+ \int \frac{x^{2}}{1 + xx - \beta_{x} \varepsilon} F \Theta^{t} \cdot W(\mu^{2}, g)$ = 115 GeV 2000 maple

All the same, the number 115 GeV remains stuck in our heads as we wait for the LHC!

... probably not!

(Very) selected LEP Results 20M Z⁰ decays at LEP-I 40k W⁺W⁻ events at LEP-II.

- •There are 3 families of leptons
- They all feel the electroweak force equally (lepton universality)
- Standard Model established in detail and its parameters measured very precisely (e.g. m_Z to 0.002%, m_W to 0.05%)
- Direct and indirect constraints on the Higgs.
- Many many limits on physics beyond the Standard Model.
- \bullet QCD measurements, e.g. α_{s}

... and many many more.

e⁺e⁻ Colliders as B Factories

- B factories produce huge numbers of B⁰ and B⁰bar mesons
 Mainly to investigate CP violation
- Also searches for new physics via rare or forbidden beauty and charm decays and searches for new beauty, charm hadrons

• e⁺e⁻ facilities: most recently BaBar (SLAC) and Belle (KEK), 1999-2008. Unprecedented e⁺e⁻ luminosity ~10³⁴ cm⁻² s⁻¹ (cf LEP ~ 10³¹ cm⁻² s⁻¹), will collect ~ 10⁹ BBbar pairs in total!

• pp facilities may win in the end due to larger cross sections, but messier environment with large backgrounds.... First try (HERA-B) not very successful, though much progress by Tevatron experiments and LHCb is coming! ...

Today ... look at BaBar (which has Birmingham involvement)

Weak Interactions & CP Violation

Cartoon shown by N. Cabibbo in 1966... since then, there was tremendous progress in the understanding (better: description) of *CP* violation \rightarrow next lecture !

What is CP Violation?

- C operator `charge conjugation` reverse electric charge
- P operator `parity` reverse spatial coordinates
- CP together converts matter into antimatter
- CP symmetry is conserved by all interactions except weak
- 1956 (Wu et al) Weak interactions don't conserve C or P
- 1964 (Cronin & Fitch) Weak interactions also violate CP
 discovered by studying K⁰ (s+dbar, sbar+d) decays
- CP violation can explain matter/antimatter asymmetry of universe!
- Suppose matter and antimatter were equal at big bang
- Without CP violation, everything annihilates to photons
- With CP violation, small (1/10⁹!) excess of matter may survive!

Standard Model allows CP violation (See Dr Kenyon's Lectures on the `CKM matrix`) Quantified as 3 angles forming the `Unitarity Triangle'

SLAC Accelerator Complex

- Uses (upgraded) previous SLAC linear accelerators
- Developed by adding `Low` and `High` energy storage rings
- Very (unprecedented) high intensity beams
- High energy electron ring (9 GeV)
- Low` energy positron ring (3.1 GeV)
- Centre of mass energy 10.58 GeV
- Much lower than LEP!.... Tuned to Y(4S) rather than Z^0 resonance

Stanford SLAC from the Air Linear Accelerator Center Linac **Fixed Target** Experiments **BABAR** Positron Arc $SLD \; (\& \; \mathsf{MARK} \; \mathsf{II})$

Why Run at Y(4S)?

Enhances b quark fraction compared with light quarks
Just above threshold for decay to B⁰ B⁰bar or B⁺B⁻
... lightest (pseudoscalar)
B mesons (5.3 GeV each)

• Y(4S) decays 100% to B⁰B⁰bar or B⁺B⁻

 $\boldsymbol{\cdot}$... end up with a B^{0} and a $B^{0}bar$ almost at rest in CMS

• ... i.e. moving with the same momentum in the lab.

Why is the B Factory Asymmetric?

If the B mesons are moving, we can measure how far they travel before they decay (and hence how long they live)

• We can thus measure the tiny asymmetries between the matter and the antimatter lifetimes in a beautifully controlled experiment

• Known as a `time dependent CP asymmetry' measurement

e.g. The "Golden" Decay Channel

- The `golden channel' for this study is B⁰ $\rightarrow J/\Psi K^{0}_{s...}$ $\rightarrow very low background$ $\rightarrow available for both B^{0}$
 - and B^obar

Many other channels have been used!

• The `tag' decay could be one of many things, though leptons are cleanest ...

Sensitivity to New Physics

Many other different B⁰ decay modes are studied!

Studying rare non-tree diagrams gives sensitivity to new particles way beyond the kinematic reach of the experiment via virtual loops. Standard model intact ... so far!

Sensitivity to New Physics

why (the hell) do you call these **Penguin diagrams**? They don't look like penguins!

I've never seen a Feynman diagram that looks like you ③

Mirror image of Richard Feynman

courtesy: G. Hamel de Monchenault

BaBar Detector

Asymmetric detector design, reflecting asymmetric beams

The Future for e⁺e⁻ Physics

Historically, discoveries of new particles are often made at pp machines detailed measurements are made at e^+e^- machines (eg W, Z at SPS, LEP)

Discoveries at LHC should be complemented with a future e^+e^- facility

 e^+e^- storage rings limited by synchrotron radiation (~1/m⁴)

Need to go back to linear accelerators But use two of them, end to end!

Linear Collider Plans and Parameters

International Linear Collider (ILC) is a genuine world Collaboration, developing a linear collider with energy 500 GeV - 1 TeV, involving Europe, USA and Japan ...

- ... but funding problems (2008) in Europe and USA 😣
- Precision! e.g. Could measure Higgs couplings to 1%
- Each accelerator ~20km long, beam width ~3nm!
- Birmingham involvement in accelerator R&D and in calorimeter design (CALICE)
- Compact Linear Collider (CLIC) is a longer term CERN project \rightarrow 3TeV by accelerating gradients ~150 MeV/m
- Decisions will now likely depend on what LHC sees! There could be a single world facility, maybe around 2020.

