Last lecture on triggering and data acquisition ... next ...

Part II of Course: Data treatment

Today and Friday ... Overview of how to make an 'arf decent measurement

- Today ... Basic Definitions
 - Luminosity
 - Monte Carlo techniques

Data Treatment and Analysis: the Task

 A typical analysis may have many millions of events ☺, but it's rarely enough just to count them!

 Only raw data is obtained from detector (digitised drift chamber, calorimeter signals etc)

• Reconstruct events ... list of tracks, primary & secondary vertices, jets, some identified particles (e, γ , μ , ν)

• Detectors are not perfect! Reconstructed information needs to be treated (corrected) in many ways before it can be compared with theory or another imperfect detector!

• Data analysis is about extracting meaningful, transferable results from the reconstructed detector information

The role of the Data Analyser

The job of the data analyser is to

- Correct the data for detector effects
- Minimise and control systematic effects
- Quantify statistical and systematic uncertainties
- Compare data with theory and test agreement
- Present the data in a <u>digestible</u>, transferable form

... in as unbiased a way as possible!

`Digestible, transferable results' can take many forms ... Simple numbers (model parameters, masses ...) Ratios or asymmetries between 2 numbers Cross sections or differential cross sections

Next 2 lectures will look at measuring a differential (binned) cross section ... if you can do that, you can do most things!

Cross Sections ... Definitions

 Probabilitiv that interaction occurs between 2 particles can be thought of as the effective area that one of the particles presents to the other. 'Cross section' is therefore an area:

1 barn=10⁻²⁸ m² (1b) ~ size of a Uranium nucleus ("it's as

big as a barn" said a physicist scattering neutrons off Uranium whilst developing the atomic bomb in WWII!)

... but these days we deal in much smaller units pb or fb

- Formally, cross section for process ab->X is the rate of the process per incident flux of particle a per target particle b
- i.e. σ =(reactions per unit time)/(number of incident particles per unit time per unit area x
 - number of target particles)

... How does this help?...

Luminosity ... Definitions

 <u>Instantaneous Luminosity</u> is a property of an accelerator, defined as ...

 L_{inst} = # of events produced per unit x-sec per unit time. (e.g. LHC design luminosity is 10^{34} cm⁻² s⁻¹)

 L_{inst} depends on beam currents and overlap area (L α I_a I_b / A)

- Integrated over the time taken to collect our event sample, luminosity is a property of the sample, telling us how many events to expect per unit cross section
- i.e. we can extract cross sections using <u>σ=N/L</u> where ...
 N = number of events counted
 L= <u>integrate</u>d luminosity of sample (units barn⁻¹)
- We just need to count events N and somehow measure the integrated luminosity (over time) L of our sample.

Measuring Luminosity

- In practice, beam currents can be easily measured, but their overlap area at interaction point cannot!
- Luminosity is determined by measuring the number of events for a process with a `well known' cross section... ...ideally a high rate process with well known cross section, calculable from QED. OK for e⁺e⁻, ep machines. Hard for pp!

Example ... H1 Integrated Luminosity

Example from BaBar

Current world records held by b factories...

1 fb⁻¹ per day achieved! (same as LHC design aim ... a few years away)!

Grand total delivered is 480 fb⁻¹ (slightly more at Belle) How to deal with an Imperfect Detector

Need to correct number of observed events to number of expected events given a perfect detector:

- no holes / cracks
- perfect efficiency for measuring particles
- perfect resolution and no misalignments / miscalibrations
- no background events ... etc!!!
- Modified cross-section formula:

$$-N_{obs} =$$
 number of observed events

- $-N_{b/g} =$ number of background events
- $-A_{cc} = Acceptance$
- $-\epsilon = efficiency$

Acceptance, efficiency, background and most other evils can be calculated using a <u>Monte Carlo' simulation</u>

L.ε. A

3 Steps to a Monte Carlo Simulation

- MC techniques are fundamental to most particle physics results!
- A Monte Carlo simulation begins with a model of the underlying process under study and tells us how we expect it to look in detector ... allows us to **understand the effects of our detector and analysis cuts**

Step 1: An event generator

- A program to calculate the cross-section of a specific physics process in a given kinematic range, using a theoretical model (e.g. Standard Model).
- Given the theoretical distribution, uses random number generator to produce individual events within distribution hence name Monte Carlo

Calculation is usually only done to leading order in QCD (though See MC@NLO for LHC).

Simulating Higher Order Processes and Hadronisation

- Higher order quark / gluon emissions are simulated statistically using approximations to QCD: usually 'parton showers' (DGLAP evolution)
- High energy particles radiate until all particles have low energy, then forced into hadrons → 'JETSET' (based on the LUND string model)

- Final generator output is a set of "stable" final state particles
 ... as in this example, but also
 "fast" decays such as π⁰→γγ, D*+→K⁻π⁺π⁺
- Complete 4-vector info for every final state particle
- Parton state known as <u>parton</u> <u>level</u>
- "Stable" particle state called hadron level or "MC truth"

Example of a Generator Steering File

mcsteer.txt	Page 1/2	Feb 13, 01 1	5:17			m	CSIGER.IXI Page 22	
	- 1						ICUT must be 3, if THMI is used!	
	- 1						be avoided!	
variables available to the user		• 'PTMI'	0	0	υ.	1	(D=0.0) lower cut on the transverse	iypicully,
a and can be changed as indicated			_	-			momentum of the scattered electron	
JANDO and HERACLES manuals.	1	BCORF	0	0	0.5	- 1	(D=0.0) cutoff energy for	
	1	1					A gradiative and non-rad, ev.	ΛΛ (
							>0=only hard photon bremastr.	
, PARL(30), X, Y, W2, Q2, U	1	' IUT2'	1	0	1	1	(D=0) integration of the non-	
to the tend in the TROWN	1						Additive contribution (DC)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$+ - T_{ST}(19)$ and PARL(1) to PARL(19)	. 1	· '10T2'	2	0	1	1	(0=0) integration of the non-	hraduction
ST(20) to LST(40) and PARL(20) to							radiative contribution (CC)	DI UUUUUIUI
	1		-	-	_		0-off, 1-on	
		10T3'	1	0	5	- 1	(0=0) integration of initial (radcor)	
where he he shares are arbitrary	1	1					number of iterations for VBGAS	noode
conly the first index is used, the							<100:VEGAS, >100:VEGAS1/2	neeus
	1	' 10/T3 '	2	0	5	1	(0=0) as INT3(1) but for final (radeor)	
the BOS manual) for writing card	1	1 1700037	,		-	,	(O-D) to THD2(1) but for Ormshop (stdens)	
	1)	-		2		(0=0) as inits(1) but for compress (radeor	Covonal
a) without inside blanks	1	1 12					contribution NC	Severui
·	1	* 'INT3'	7	8	5	1	(0=0) integration of initial	
uve to be shortened to four							state bremstr. contr. CC	
							<100:VEGAS. >100:VEGAS1/2	hand of
e reserved for comment	1	"CEPVE"	0	0	10000	1	(0=1900) number of integration	DODES OF
							points used for VEGAS	
COMENT IN CREUED	_ 1	1 m. m.	1		1	- 1	(U=2) EW-parameters Judyan Ma May Judyan Ma J	
	1	* 'LPIR'	2	0	0	1	(0=1) only Born x-section term (radcor)	ataonina
ards analogation and a second second second	• 1)						SIEEring
	1						or l=including corrections	o o o ng
(0-30) Energy of electron	1	The state of the s		0	0		leinelidad. Reavelidad	
beam in BeV		* 'LPIU'	5	0	1	1	(0=0) guarkonic QEO corrections	
(0=0.) polarization of lepton		· ·					l=included, 0=excluded	narameters
beam (-1 1.)	1	LPIR'	6	0	1	1	(D=0) lepton-quark interference	paramerers
: (B=-1) Lepton charge lennaitron, -leelectron		- 'LPIU'	7	o	o	1	(D=2) fermionic contr. to	
(0=830,) Energy of proton beam	1			-	-		the photon self energy	
in GeV	1						0-no 1-with granes 2-packan.	ILIST TOP
! (B=0.) Q ² -weighting of events		L , LEIG,	8	0	1	1	(0=0) fermionic contribution	
the events will be weighted	• 1	A 'LPIG'	9	0	1	1	(0=0) fermionic contr. to the	•
(D=3) definition of cuts applied	4 İ	· ·					self energy of 2-boson	
leasts in x and lower Q2		* 'LPIR'	10	0	1	1	(0=9) fermionic contr. to the	<i>ovo</i> nt
2merts in 2, Invest Q2, W	1		11	n	1		Delt energy of W-boson (Delt mately only nergy in a 14	CVCIII
Sector In We St Cont of	1			·	-		energies, boxes, verbes corr.	
must be 3 for the use of THMI!	ł	4 '00111'	0	0	2	- 1	(0-1) -0 fixed alpha = (F111)	
(D=1E-4) lower cut in x	1						<pre>=1 running alpha_s to lst order =2 running alpha s to 2nd order</pre>	ορηργατογ
: (D=1.0) inspec art in w	1	4 101157	6	0	2	1	= r remaining alpha_s to the object $(0=0) = 0$ diverge at $c^{2} = -20$	yener urvi
(G=1.0) upper cut in y		4	-	-	-		=1 softened diverge at q2>0	-
$(0-4,0)$ lower cut in Q^{*+2}	1		_	_			-2 fixed below g2-4	
(D=5.0) lower cut in W (W2 90)	1	* 'F111'	0	0	0.2	-	(0=0.2) fixed alpha_s value (0=0.25) Luded, and for alche -	CT0hI
(Dec (DeC () lower cut in Thats al	L.	.1112.	v	u	0.235		(0=0.15) Lambar Lied IOC Alpha_3	3100:
in sid ort, the incoming elect	rees.							

Printed by Eram Fizvi

1/1

Tuesday February 13, 2001

Feb 13, 01 15:17

interes are:

PELE

PELE

POLA

'LLEP'

'EPRO'

102901

' ICUT'

"NEGICI"

'XMAX'

"YESTER"

"YEAX

Q2MI '

NHIN

тныг

00.70 0 / / 0.724920 6 2 PARAMETERS ------0.JANGO 6.2 parameters and steering variables are stored in the following commons and can below. They are explained in the GJARBO and

dolumes 1-4 are free

Π.

6

n

n

Ð

3) black(s) between item

characters if necessay 5) comment cards start with '*' 6) space behind "!" in each line reserved PAR-HAM | IMPX 2 IMPX HER-HAIDE ! COMMENT

*---LEPTO parameter commons * CONFOU /LEPTOU/ CUT(14),LET(40),PARL(30),

The parameters and their defailts are des manual. Please note that LST(2) to LST(19)are input parameters, whereas LST(20) to PARL(30) are output parameters. Changing parameters: The order and the number of parameters to be In case of a one-dimensional array only the second index may have any value. The basic rules (for details see the BOS man

2) items (names, indices, values) without

4) the array names in PAR-UAM have to be

ATTACATE AND A PRACLES starting cards ATTAC

n

Π.

n

n

*ER generate electrons only up to 133 Deg

26.7

27.6

1.

-1

920.

9q2mg

1

Semin

0.999

0.001

9er2min 5.8

Sthmin

0.95

in rad

mosteer.txt

 MC steering parameters obtained from detailed tuning to match (previous) data

3 Steps to a Monte Carlo Simulation

Step 2: A simulation of "stable" particles in the detector

- Each experiment creates a detailed detector simulation: e.g. description of all materials where particles could interact
- A program (usually GEANT) takes generator output (particle 4-vectors) and simulates detector response to those particles
 - particle ionisation in trackers
 - energy deposition in calorimeters
 - intermediate particle decays/radiation
 - detector noise ...
- Final output is raw detector data just like real data at read-out
 - charges measured on each tracker wire
 - Signals read out of each calorimeter channel
- MC events now in same format as real raw data!

3 Steps to a Monte Carlo Simulation

Step 3: Reconstruction, cuts etc as for Real Data

- Pass MC "raw data" through same reconstruction chain as data.
- <u>Reconstructed Level</u> output now in form useable for analysis:
 particle track trajectories, identified particles etc
- The MC now looks exactly like the data, but crucially, we still have complete info about **parton** and **hadron** levels!
 - ... Can answer questions essential to our measurement. e.g.
 - What was my acceptance and efficiency?
 - What fraction of my identified `electrons' were really photons?
- To first approximation, these answers are not greatly affected if our underlying generator is a poor model of the physics.
- But for precision measurements, the simulation has to be a good model of the data. Test with `control distributions'

e.g. Control Distributions of reconstructed data (H1)

... compare data before any corrections with rec level MC ...

- Good description by DJANGO DIS Monte Carlo simulation ③
- Big holes in ϕ due to dead bits of detector but described by simulation
- Background Monte Carlo (PHOJET) gives tiny contribution
- Reassuring results happy with model use to correct for inefficiencies such as the holes!

Bad Control Distributions and their Influence

In this H1 example, distribution of simulated z position of interaction vertex is slightly wrong due to a mistake in steering parameters

Fixing vertex distribution results in much better description of an important phsysics distribution – electron scattering angle.

What is a <u>Differential</u> Cross Section

Often we are interested in the dependence of a cross section on a variable (e.g. transverse energy of a jet, pseudorapidity, momentum transferred ...)

Work in terms of `differential cross sections e.g. d σ / dE_{t}

Definition:
$$\frac{d\sigma}{dx} = \lim_{\Delta x \to 0} \frac{\Delta \sigma}{\Delta x}$$
 such that $\int_{-\infty}^{\infty} \frac{d\sigma}{dx} dx = \sigma_{tot}$

... measure a differential cross section at a single fixed point in x by creating a bin of width Δx about that point ... modification to cross section formula ...

$$\frac{d\sigma}{dx} = \frac{N_{obs} - N_{b/g}}{L \cdot A_{cc} \cdot \Delta x}$$

... where Δx is the width of our bin in x (still have to worry about exactly which x value we measured at)

An Example Differential Cross Section

In this example, a jet cross section is measured differentially in the jet transverse momentum p_T and the jet rapidity y

... note the horizontal error bars indicating that the data point could correspond to any point in the bin ... (pessamistic!!!)

`Generalised' or `Smeared' Acceptance

Introduce smeared acceptance A_{cc} Recall: $\sigma = \frac{N_{obs} - N_{b/g}}{L \cdot \epsilon \cdot A_{cc}}$ (calculated from Monte Carlo), which corrects for 'everything' in binned cross section measurements:

- 1. Finite selection efficiency / acceptance: some events end up in no bin at all.
- 2. Finite resolution: events end up in wrong bin (migrations).

Calculating A_{cc} with an MC can be very easy!.. $A_{cc} = N_{rec} / N_{aen}$

This simple treatment is OK if resolutions are well behaved (Gaussian) and bin choices are sensible (migrations not too large) ... otherwise more complex 'unfolding' needed.

A Real Acceptance Example

Here acceptance $\sim 50\%$ for $1.1 \leq x \leq 1.9 \dots \rightarrow$ can make measurement ... but is acceptance the full story? ... here very few events are reconstructed and generated in same bin ... we need many fewer bins!

With bigger bin sizes, purity and stability improve whereas acceptance is unchanged.

Measurement region is determined by acceptance ... must be high and stable across bin

Binning choices usually defined by purity e.g. require purity > 0.68 ... i.e. bin width > resolution Exception: if data statistics are limited

