
Binned Cross Section Measurements

- Last lecture: cross
sections, luminosity
and Monte Carlo intro

-Today: how to measure 
a differential cross 
section …

- Acceptances
- Binning choices
- More corrections
- Systematic effects

Tevatron
differential

cross section
for production 

of jet as function
of  pT



Reminder: Cross Sections

• A cross section should be uniquely defined in terms of 
configurations of observable particles… i.e. in terms of 
observed hadrons, not Partons or `Leading Order’!…
theories develop and improve; data are fixed by nature!

• Definitons in terms of Lorentz invariants preferred!

A crucial link between experimental and theoretical worlds!

σ  = 
Nobs - Nb/g

L . Αcc

… where efficiency ε absorbed in Acc

Nb/g and Acc can be obtained from Monte Carlo models, but 
should always check that our analysis is ROBUST ROBUST ……
i.e. relatively insensitive to the details of the Monte Carlo!!!



Reminder: Monte Carlo Simulations
• 3 steps:  1) Event generator models underlying physics

… outputs a list of `stable’ particles
2) Simulation of detector response to particles
3) Reconstruction identical to that of data

• If all steps are done well, MC output should closely 
model the data, but crucially, we have full info about 
parton and hadron levels as well as reconstructed level!
… Can answer questions about our measurement. e.g:

- What was my acceptance and efficiency?
- What fraction of my `electrons’ are really photons?

Answers are (slightly) affected if underlying generator is 
poor model of physics. Test with `control distributions’



e.g. Control Distributions of reconstructed data (H1)

Scattered electron φ

• Good description by DJANGO DIS Monte Carlo simulation ☺
• Big holes in φ due to dead bits of detector – but described by simulation
• Background Monte Carlo (PHOJET) gives tiny contribution
• Reassuring results – happy with model - use to correct for inefficiencies

such as the holes!

Scattered electron θ

… compare data before any corrections with rec level MC …



Bad Control Distributions and their Influence

In this H1 example, 
distribution of  
simulated z position 
of interaction vertex
is slightly wrong due 
to a mistake in 
steering parameters

Fixing vertex 
distribution results 
in much better 
description of an
important phsysics 
distribution –
electron scattering
angle.



What is a Differential Cross Section

dσ

dx

… measure a differential cross section at a single fixed point 
in x by creating a bin of width Δx about that point …
… modification to cross section formula  …

Often we are interested in the dependence of a cross 
section on a variable (e.g. transverse energy of a jet, 
pseudorapidity, momentum transferred …)
Work in terms of `differential cross sections e.g. dσ / dEt
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… where Δx is the width of 
our bin in x 
(still have to worry about exactly
which x value we measured at)

=
Nobs - Nb/g

L . Acc . Δx



In this example, a jet 
cross section is 
measured differentially 
in the jet transverse 
momentum pT and the 
jet rapidity y

… note the horizontal
error bars indicating
that the data point
could correspond to any
point in the bin …
(pessamistic!!!)

An Example Differential Cross Section



`Generalised’ or `Smeared’ Acceptance
Introduce smeared acceptance Acc
(calculated from Monte Carlo), 
which corrects for ‘everything’ in
binned cross section measurements:

1. Finite selection efficiency / acceptance: some events end 
up in no bin at all.

2. Finite resolution: events end up in wrong bin (migrations).

Acc=Nrec/Ngen

Nrec = # Events reconstructed (found) in a bin
(wherever they were generated)

Ngen = # Events generated in a bin 

σ  = 
Nobs - Nb/g

L .ε . Αcc

Recall:

Calculating Acc with an MC can be very easy!..

This simple treatment is OK if resolutions are well behaved
(Gaussian) and bin choices are sensible (migrations not too
large) … otherwise more complex ‘unfolding’ needed. 







40% is a
typical

requirement



e.g. Binning Choice from H1 (double differential)
Example from a 2 
dimensional measurement
(x and Q2 in DIS)

Crosses indicate resolution
calculated in each bin, always
smaller than bin size

Optimal measurement
required variable bin sizes
due to resolution and 
available statistics 
(decreasing as Q2 increases)

All acceptances, purities and stabilities (as calculated from
Monte Carlo models) are well above 40% …



More corrections with MC: Finite Bin Size Effects

• The cross section we measure is
for the `centre of gravity’ of the bin. 
• For a cross section which falls fast, 
this can be very different from the 
cross section at the bin centre.
• Plotting at the bin centre without
correction is a very common mistake
• One solution is to show horizontal
error bars (as in Tevatron example)

Better to plot at the bin centre, xc, and make a `bin centre correction’
…. back to the Monte Carlo again to calculate as …

BCC =       Cross section at bin centre
---------------------------------------

Cross section averaged over bin



Using MC to deal with Radiative Effects

Photon emitted usually at very small
angle to beam electron –
sometimes detected e.g. in small 
angle calorimeter ….. but usually not

• For many measurements we want to correct for higher order QED
effects such as initial state photon radiation. 
• Whether we do this or not is a question of definition, but theorists
probably don’t want to have the radiative effects included. 
• They want to work with a BORN Level Cross Section

1) Initial state radiation (ISR) effectively lowers beam energy of 
some events



Radiative Effects II: Final State Radiation

ep example

• As for ISR, final state
photon radiation is usually
nearly collinear with radiating
electron – in fact you will 
usually reconstruct it in the
same calorimeter cluster – in
which case no correction needed! 

• Still need small corrections
for wide angle emissions



Radiative Effects III

Monte Carlo models to the rescue again, as long as it has an interface 
to a reliable QED model! Correct for all 3 effects with  a factor …..

Predicted cross section with ISR, FSR and loops switched off in MC

Predicted cross section with ISR, FSR and loops simulated in MC

Radiative corrections can be large e.g. if measurement involves
photons or is very sensitive to the beam energy

Third effects is `virtual 
loop corrections’ –
effectively just a change 
in photon coupling



What about the Uncertainties?
• We now have all ingredients needed to obtain the
basic result for a (binned) differential cross section ☺

• However, this is not really a `measurement’ until we also 
assess the errors … which is usually most of the work /

• Future lectures will deal with statistical errors (always
calculable in principle, but often done incorrectly) and
systematic errors (generally a poorly understood subject, 
even by professionals, but still almost[?] always 
quantifiable in principle

… first, some basic error theory, which applies to both …



• For most purposes, assume that measurements follow a 
Gaussian distribution about the true value of a variable.
• By the `error’ on a measurement, we mean 1σ (Gaussian)

Reminder of Mean, Standard Deviation …


