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Binned Cross Section Measurements
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Reminder: Cross Sections
A crucial link between experimental and theoretical worlds!

I\Iobs ) |\Ib/g . :
G = .. where efficiency ¢ absorbed in A__

L. A,

- A cross section should be uniquely defined in terms of
configurations of observable particles... i.e. in terms of
observed hadrons, not Partons or * Leading Order’l...

theories develop and improve; data are fixed by naturel

- Definitons in terms of Lorentz invariants preferred!

Ny/q and A.. can be obtained from Monte Carlo models, but
should always check that our analysis is ROBUST ...
i.e. relatively insensitive to the details of the Monte Carloll!




Reminder: Monte Carlo Simulations

-+ 3 steps: 1) Event generator models underlying physics
.. outputs a list of "stable’ particles
2) Simulation of detector response to particles
3) Reconstruction identical to that of data

+ If all steps are done well, MC output should closely
model the data, but crucially, we have full info about
parton and hadron levels as well as reconstructed level!

.. Can answer questions about our measurement. e.g:
- What was my acceptance and efficiency?
- What fraction of my "electrons’ are really photons?

Answers are (slightly) affected if underlying generator is
poor model of physics. Test with ~ control distributions’



e.g. Control Distributions of reconstructed data (H1)

.. compare data before any corrections with rec level MC ...
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» Good description by DJANGO DIS Monte Carlo simulation ©

e Big holes in ¢ due to dead bits of detector — but described by simulation
« Background Monte Carlo (PHOJET) gives tiny contribution
 Reassuring results — happy with model - use to correct for inefficiencies

such as the holes!



Bad Control Distributions and their Influence
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What is a Differential Cross Section

Often we are interested in the dependence of a cross
section on a variable (e.g. transverse energy of a jeft,
pseudorapidity, momentum transferred ...)

Work in terms of " differential cross sections e.g. do / dE;

e do Ao
Definition: —— — |im —= such that I —_— dX O

dx Ax—0 AX tot

.. measure a differential cross section at a single fixed point
in X by creating a bin of width Ax about that point ...
.. modification to cross section formula ...
.. where Ax is the width of
do _ Nops = No/g our bin in x
dx [ A  Ax (still have to worry about exactly
oo which x value we measured at)
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An Example Differential Cross Section
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" Generalised' or * Smeared’ Acceptance

Introduce smeared acceptance A,
Nops = Nbig  (calculated from Monte Carlo),
C = which corrects for ‘everything' in
L€.Ax  binned cross section measurements:

Recall:

1. Finite selection efficiency / acceptance: some events end
up in no bin at all.

2. Finite resolution: events end up in wrong bin (migrations).

Calculating A . with an MC can be very easyl.. | A =N,../N.,

N... = # Events reconstructed (found) in a bin
(wherever they were generated)

Ng.n = # Events generated in a bin

This simple treatment is OK if resolutions are well behaved
(Gaussian) and bin choices are sensible (migrations not too
large) ... otherwise more complex ‘unfolding’ needed.



Events

‘A Real Acceptance Example'
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Here acceptance ~ 50% for 1.1 S z £ 1.9 ... ~ can make measurement
... but is acceptance the full story? ... here very few events are reconstructed
and generated in same bin ... we need many fewer bins!



‘ Bin Purity and Stability I
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... Same data, bigger bin sizes I
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With bigger bin sizes, purity and stability improve
whereas acceptance is unchanged.

Measurement region is determined by acceptance
... must be high and stable across bin

Binning choices usually defined by purity

e.g. require purity > 0.68 . ..i.e. bin width > resolution

Exception: if data statistics are limited
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e.g. Binning Choice from H1 (double differential)

= 1 r

Example froma 2
dimensional measurement
(x and Q%in DIS)

Crosses indicate resolution
calculated in each bin, always
smaller than bin size

Optimal measurement
required variable bin sizes
due to resolution and
available statistics
(decreasing as Q2 increases)

All acceptances, purities and stabilities (as calculated from
Monte Carlo models) are well above 40% ...



More corrections with MC: Finite Bin Size Effects

e The cross section we measure IS
for the "centre of gravity’ of the bin.
e For a cross section which falls fast, O
this can be very different from the
Cross section at the bin centre.

e Plotting at the bin centre without
correction iIs a very common mistake
 One solution is to show horizontal
error bars (as in Tevatron example) X

Better to plot at the bin centre, x., and make a "bin centre correction’

AL

.... back to the Monte Carlo again to calculate as ...

BCC = Cross section at bin centre

Cross section averaged over bin



Using MC to deal with Radiative Effects

« For many measurements we want to correct for higher order QED
effects such as initial state photon radiation.

» \Whether we do this or not is a question of definition, but theorists
probably don’t want to have the radiative effects included.

e They want to work with a BORN Level Cross Section

1) Initial state radiation (ISR) effectively lowers beam energy of
some events

Photon emitted usually at very small
angle to beam electron —

sometimes detected e.g. in small
angle calorimeter ..... but usually not




Radiative Effects Il; Final State Radiation

 As for ISR, final state

photon radiation is usually
nearly collinear with radiating
electron — in fact you will
usually reconstruct it in the

same calorimeter cluster — in
which case no correction needed!

e Still need small corrections
for wide angle emissions

ep example

¢y Run431591 Event 146212 Class:4 56751119 25 272539

RunDate 410/05

High energy forward e AND photon (non-showering!!




Radiative Effects |11

Third effects is "virtual
loop corrections’ —
effectively just a change
In photon coupling

Monte Carlo models to the rescue again, as long as it has an interface
to a reliable QED model! Correct for all 3 effects with a factor .....

Predicted cross section with ISR, FSR and loops switched off in MC

Predicted cross section with ISR, FSR and loops simulated in MC

Radiative corrections can be large e.g. if measurement involves
photons or Is very sensitive to the beam energy



What about the Uncertainties?

 We now have all ingredients needed to obtain the
basic result for a (binned) differential cross section ©

» However, this is not really a ‘measurement’ until we also
assess the errors ... which is usually most of the work ®

* Future lectures will deal with statistical errors (always
calculable in principle, but often done incorrectly) and
systematic errors (generally a poorly understood subject,
even by professionals, but still almost[?] always
quantifiable in principle

.. first, some basic error theory, which applies to both ...



Reminder of Mean, Standard Deviation ...

Mean / Average of a distribution

) =)= E=)_,  Pa-® .. 0T = _fPf:;::_] - xdx it continuous distribution

Mean of a derived guantity

f(x) = ZE Pr-f(x) eglifle)=2r [lz) = Em Py - 20 = 2T

Variance V'

Average squared deviation from mean uUsed for spread (average deviation from mean is zero)

Vi)=(z—2z)2=Y_pz(xz—%)? =22 (7)°

Standard Deviation

Otften used in preference to Variance because it has the same Uhits as @

o(z) = /V(2) - \/%E(:n — 7)2
* For most purposes, assume that measurements follow a
Gaussian distribution about the true value of a variable.

* By the "error' on a measurement, we mean 1o (Gaussian)




