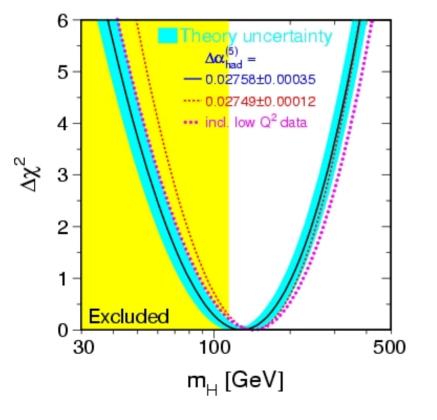
Last Lecture: Probability Distributions ... Binomial

: Central Limit Theorem



s ... Binomial ... Poisson ... Gaussian ... why Gaussians are "normal" ... why for N measurements, $\sigma(N) = \sigma(1)/sqrt(N)$

Today's lecture:

Extracting Information from Data: ... Estimation ... Fitting ... Likelihood

(See Barlow's text book for a more detailed discussion)

Case Study Reminder

- 10 minutes + 5 for questions is not long!

- Please focus on experimental and phenomenological aspects (i.e.things studied on this course) rather than giving too much theory detail

- Marks awarded (with equal weight) for:
 - Presentation
 - Scientific Content
 - Understanding Conveyed
 - Answers to questions

- Assessed by PRN and a couple of friendly Ph.D. students

- Aim to be (reasonably) fun, interesting and educational ...

Case Study Schedule

- 1. Monday 1 December
- Tony: Neutrinoless double beta decay experiments
- Jack: The Totem experiment / forward physics @ LHC
- 2. Friday 5 December
- Sukhbinder: Triggering events at the LHC
- Pat: Heavy Ion experiments and the Quark-Gluon Plasma
- Amelia: Evidence for neutrino mass from SuperK & elsewhere
- 3. Monday 8 December
- Alex: The top quark discovery at the Tevatron
- Rory: Searching for Supersymmetry at the LHC

Reminder: The Central Limit Theorem

When multiple measuremements are added together: $\langle x \rangle = \mu_1 + \mu_2 + ... \mu_N$ $V(x) = V_1 + V_2 + ... V_N$ $P(x) \rightarrow Gaussian$ $\sigma \sim \frac{1}{\sqrt{N}}$

Examples of the CLT (i.e. Gaussian distributions) are everywhere!... eg people's heights are governed by many environmental & genetic factors, but overall distribution is Gaussian

There are counter-examples, eg people's weights ... because a single factor (food intake) dominates and gives a skew

Summary of Probability Distributions

Main points from last lecture ...

- Binomial distribution (yes/no situations, eg effic's)
- Poisson distribution (numbers of events observed if

we know the mean number or

- `expectation')
- Both look more and more Gaussian as stats improve

Distributions you need to know about in high energy physics

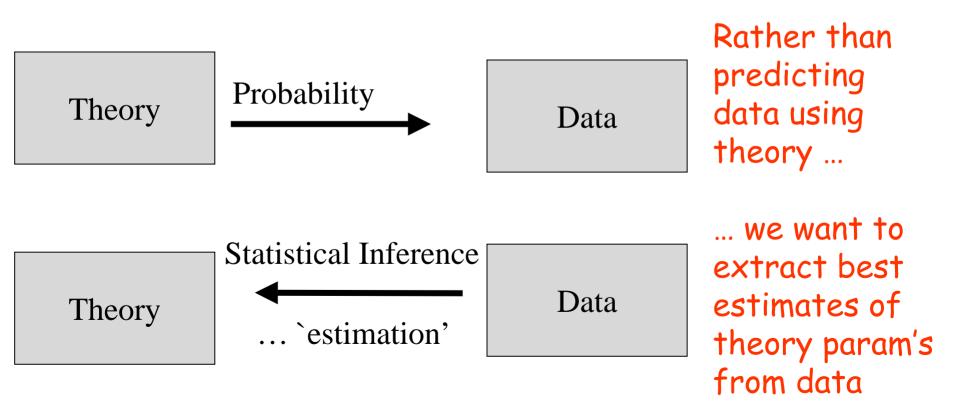
Gaussian

- Poisson, Binomial
- Everything else (Top hat, Breit-Wigner, Landau, Gamma, Student's t, χ^2 ...)

Extracting Information from Data: Estimation and Fitting

How to decide whether our data are well described by a model?

How to extract `best estimates' of model parameters from the data?



What is an Estimator?

Formal Definition:

An estimator is a quantity extracted as a function of the data which gives a numerical value for a property of the parent distribution.

e.g. some possible estimators for the mean of a set of N points $\{x\} = x_1, x_2, x_3 \dots x_N$:

$$\hat{\mu}(\{x\}) = x_1$$
 $\hat{\mu}(\{x\}) = \frac{x_{\max} + x_{\min}}{2}$ $\hat{\mu}(\{x\}) = \frac{1}{N} \sum_i x_i$

e.g. estimators for the variance of a set of N points {x}:

$$\hat{V}(\{x\}) = \frac{1}{N} \sum_{i} (x_i - \hat{\mu})^2 \qquad \hat{V}(\{x\}) = \frac{1}{N - 1} \sum_{i} (x_i - \hat{\mu})^2$$

.... some estimators are better than others!

Desired Properties of Estimators

- 1. Consistency. An estimator is consistent if it tends towards the true value as $N \rightarrow \infty$.
- 2. Unbiased. An estimator is unbiased if it's expectation value is equal to the true value.
- 3. Efficient. An estimator is efficient if it's variance is small.
- Of examples on previous page, $\hat{\mu}(\{x\}) = \frac{1}{N} \sum_{i} x_i$ optimal choices are ... • Easy to see that these are $\hat{V}(\{x\}) = \frac{1}{N-1} \sum_{i} (x_i - \hat{\mu})^2$ consistent and unbiased.
- Efficiency is more complicated
- (see `Minimum Variance Bound' in text books)
- Often, we want to "estimate" much more complicated things than means and variances – e.g. α_s from lots of different observables in jet data ... need generalised estimation methods

The Likelihood Function

Suppose we have a set of data points $\{x_1, x_2, x_3 \dots x_N\}$ taken from a "*parent" probability distribution* characterised by a parameter A, to be estimated.

e.g. A might be the Higgs mass and $\{x_i\}$ might be LEP and TeVatron data which we believe obey the Standard Model

Define $P(x_1; a)$ = Probability of getting the result $x_1 \underline{if} A = a$ Then the `likelihood' of A=a is just the combined probability that we get the set of points $\{x_i\}$ if A=a ... i.e...

N7

$$L(x_1, x_2, \dots, x_N; a) = P(x_1; a) P(x_2; a) \dots P(x_N; a) = \prod_{i=1}^{N} P(x_i; a)$$

Often more practical to work with `log likelihood'

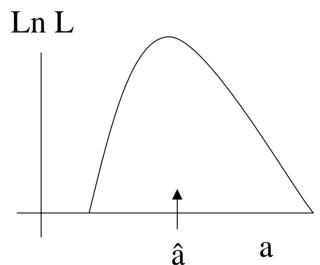
$$\ln L(x_1...x_N;a) = \sum_{i=1}^{N} \ln P(x_i;a)$$

Maximum Likelihood

To get best estimate \hat{a} for a, just maximise the (log) likelihood of obtaining measured data with respect to a

... well defined general estimation method...

The maximum likelihood estimator \hat{a} is the value of a which makes the probability of the observed results a large as possible.



$$\hat{a}$$
 is obtained by the condition $\frac{d \ln L}{da}\Big|_{a=\hat{a}} = 0$

Maximum likelihood has lots of nice properties consistent, unbiased and efficient for large N Invariant: i.e, if we extract **â** and u is a function of a, **û=u(â)** nice programs exist to do max / minimisation in real problems!

Numerical Max Likelihood Example

Suppose we have a sample $\{x_i\} = 0.89, 0.03, 0.50, 0.36, 0.49 \dots$... which we know comes from a parent distribution with $P(x) \alpha 1 + a(x-0.5)$, but a is unknown.

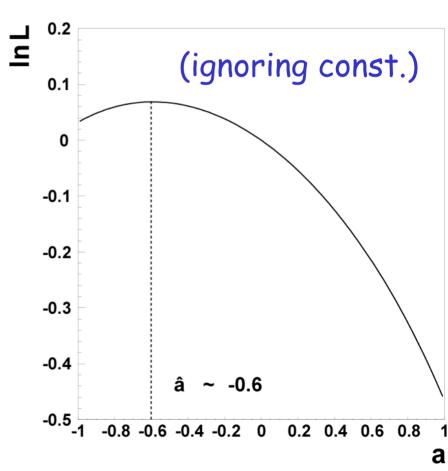
We have P(0.89)=1+0.39a etc

Construct maximum likelihood:

lnL=ln(1+0.39a)+ln(1-0.47a)+ln(1)ln(1-0.14a)+ln(1-0.01a)+const.

Plot this to see it has a maximum Near a=0.6.

So log likelihood estimator is \hat{a} ~-0.6



Important Example: Combining Measurements of the Same Quantity with Different Errors

What is our best estimate of a quantity, which has been measured several times (values x_i) with different errors σ_i ?

For each measurement, i,

$$P(x_i) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-(x_i - \mu)^2 / 2\sigma_i^2}$$

So the log likelihood is:

$$\ln L = \sum_{i} -\ln \sigma_{i} \sqrt{2\pi} - \sum_{i} \frac{(x_{i} - \mu)^{2}}{2\sigma_{i}^{2}}$$

Differentiating:

$$\frac{\partial \ln L}{\partial \mu} = \sum_{i} \frac{x_i - \mu}{\sigma_i^2} = 0 \quad \text{at maximum}$$

Best estimate of mean is to weight the usual average by (variance)⁻¹ ...

Can also show that $\hat{\sigma}^2 = /\sum_i (1/\sigma_i^2)$

$$\hat{\mu} = \frac{\sum_{i} (x_i / \sigma_i^2)}{\sum_{i} (1 / \sigma_i^2)}$$

("the weighted mean")