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(See Barlow's text book for a more detailed discussion)



Case Study Reminder

- 10 minutes + 5 for questions is not long!

- Please focus on experimental and phenomenological aspects
(i.e.things studied on this course) rather than giving too
much theory detail

- Marks awarded (with equal weight) for:
- Presentation
- Scientific Content
- Understanding Conveyed
- Answers to questions

- Assessed by PRN and a couple of friendly Ph.D. students

- Aim to be (reasonably) fun, interesting and educational ...



Case Study Schedule
1. Monday 1 December

Tony: Neutrinoless double beta decay experiments

Jack: The Totem experiment / forward physics @ LHC

2. Friday 5 December

Sukhbinder: Triggering events at the LHC

Pat: Heavy Ion experiments and the Quark-Gluon Plasma
Amelia: Evidence for neutrino mass from SuperK & elsewhere
3. Monday 8 December

Alex: The top quark discovery at the Tevatron

Rory: Searching for Supersymmetry at the LHC



Reminder: The Central Limit Theorem

When multiple measuremements are added together:
<X>:u1+u2+...uN V(X)=V1+V2+...VN P(X) - GGUSSiGn

1

0~_
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Examples of the CLT (i.e. Gaussian distributions) are
everywherel... eg people’s heights are governed by many
environmental & genetic factors, but overall distribution is

Gaussian

There are counter-examples, eg people’s weights ... because a
single factor (food intake) dominates and gives a skew



Summary of Probability Distributions

Main points from last lecture ...
- Binomial distribution (yes/no situations, eg effic's)
- Poisson distribution (numbers of events observed if
we know the mean number or
" expectation’)
- Both look more and more Gaussian as stats improve

Distributions you need to know about in high
energy physics ...

» Gaussian
» Poisson, Binomial

- Everything else (Top hat, Breit-Wigner, Landau, Gamma, Student's t, 2
)



Extracting Information from Data:

Estimation and Fitting

How to decide whether our data are well described by a model?

How to extract best estimates’ of model parameters from the data?

Theory

Theory

Probability
—

Statistical Inference
—
.. estimation’

Data

Data

Rather than
predicting
data using
theory ..

.. we want to
extract best
estimates of
theory param'’s
from data



What Is an Estimator?

Formal Definition:
An estimator Is a quantity extracted as a function of the data which
gives a numerical value for a property of the parent distribution.

e.g. some possible estimators for the mean of a set of N points
{X} = Xy, Xoy X3 «on Xy

pOP =% Apg)=m S a)= Zx

e.g. estimators for the variance of a set of N points {x}:

V{x3)= Z(X -4 V3= Z(X — i)’

.. Some estimators are better than others!



Desired Properties of Estimators

1. Consistency. An estimator is consistent if it tends towards
the true value as N—x.

2. Unbiased. An estimator is unbiased if it's expectation
value is equal to the true value.

3. Efficient. An estimator is efficient if it's variance is small.

» Of examples on previous page,

optimal choices are ... {X} Z Xi

* Easy to see that these are

consistent and unbiased. X X. — [1)°
» Efficiency is more complicated { } Z( “)
(see " Minimum Variance Bound' in text books)

Often, we want to "estimate” much more complicated things
than means and variances - e.g. o, from lots of different
observables in jet data .. need generalised estimation methods



The Likelihood Function

Suppose we have a set of data points {x;, X,, X5 ... X} Taken
from a “parent” probability distribution characterised by a
parameter A, to be estimated.

e.g. A might be the Higgs mass and {x} might be LEP and
TeVatron data which we believe obey the Standard Model

Define P(x; . a) = Probability of getting the result x; if A=a
Then the " likelihood' of A=a is just the combined probability
that we get the set of points {x;} if A=a ... i.e..

N
L(X,, %y, ... Xy ;@) = P(X;@)P(X,;)...P(xy;@) = | [ P(x;a)
=1
Often more practical o work with " log likelihood'
N
InL(x...xy;a) = > InP(x;a)
1=1



Maximum Likelithood

To get best estimate a for a, just maximise the (log) likelihood of
obtaining measured data with respect to a nL
n

... well defined general estimation method...

The maximum likelihood estimator § 1S
the value of a which makes the probability
of the observed results a large as possible.

a» —»
QO

dinL 0
da | .

a=a

a Is obtained by the condition

Maximum likelihood has lots of nice properties ....

.... consistent, unbiased and efficient for large N

.... Invariant: i.e, if we extract a and u is a function of a, Gi=u(a)
.... nice programs exist to do max / minimisation in real problems!



Numerical Max Likelihood Example

Suppose we have a sample {x;} = 0.89, 0.03, 0.50, 0.36, 0.49 ...
... which we know comes from a parent distribution with

P(X) o 1+a(x-0.5), but a is unknown.
We have P(0.89)=1+0.39a etc =
Construct maximum likelihood:

InL=In(1+0.39a)+In(1-0.47a)+In(1)
In( 1-0.14a)+In(1-0.01a)+const.

Plot this to see It has a maximum
Near a=0.6.

So log likelihood estimator is a~-0.6

(ignoring const.)
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Important Example: Combining Measurements
of the Same Quantity with Different Errors

What is our best estimate of a quantity, which has been
measured several times (values x;) with different errors o, ?

. 1 o
For each measurement, i, P(X)= o~ (4’120
O\

So the log likelihood is: InL =Z—lncfi 7= (xiz—/;)z
_ - 20

Differentiating: 5|n L Z _0 at maximum
2

Best estimate of mean is to wengh’r . Z(Xi lo7)

the usual average by (variance)! ... a > (o}

Can also show that o’ = /Z (L o?) (“the weighted mean”)
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