
Last Lecture: Probability Distributions … Binomial
… Poisson
… Gaussian

: Central Limit Theorem    … why Gaussians
are “normal”

… why for N 
measurements, 
σ(N) = σ(1)/sqrt(N)

Today’s lecture:

Extracting Information 
from Data:

… Estimation
… Fitting
… Likelihood

(See Barlow’s text book for a more detailed discussion)



Case Study Reminder
- 10 minutes + 5 for questions is not long!

- Please focus on experimental and phenomenological aspects 
(i.e.things studied on this course) rather than giving too 
much theory detail

- Marks awarded (with equal weight) for:
- Presentation
- Scientific Content
- Understanding Conveyed
- Answers to questions

- Assessed by PRN and a couple of friendly Ph.D. students

- Aim to be (reasonably) fun, interesting and educational …



Case Study Schedule
1. Monday 1 December

Tony: Neutrinoless double beta decay experiments

Jack: The Totem experiment / forward physics @ LHC

2. Friday 5 December

Sukhbinder: Triggering events at the LHC

Pat: Heavy Ion experiments and the Quark-Gluon Plasma

Amelia: Evidence for neutrino mass from SuperK & elsewhere

3.  Monday 8 December

Alex: The top quark discovery at the Tevatron

Rory: Searching for Supersymmetry at the LHC



Reminder: The Central Limit Theorem
When multiple measuremements are added together:
<x>=μ1+μ2+…μN V(x)=V1+V2+…VN P(x) Gaussian

1~
N

σ

Examples of the CLT (i.e. Gaussian distributions) are 
everywhere!… eg people’s heights are governed by many 
environmental & genetic factors, but overall distribution is 
Gaussian

There are counter-examples, eg people’s weights … because a 
single factor (food intake) dominates and gives a skew



Summary of Probability Distributions

•Gaussian
• Poisson, Binomial
• Everything else (Top hat, Breit-Wigner, Landau, Gamma, Student’s t, χ2

…)

Distributions you need to know about in high 
energy physics ….

Main points from last lecture …
- Binomial distribution (yes/no situations, eg effic’s)
- Poisson distribution (numbers of events observed if

we know the mean number or
`expectation’)

- Both look more and more Gaussian as stats improve



Extracting Information from Data: 
Estimation and Fitting

How to decide whether our data are well described by a model?

How to extract `best estimates’ of model parameters from the data?

Theory Data

Statistical Inference

Theory Data

Probability

… `estimation’

Rather than
predicting
data using
theory …

… we want to
extract best 
estimates of
theory param’s
from data



What is an Estimator?

( ) 2)ˆ(1}{ˆ μ−= ∑
i

ix
N

xV

( ) ∑=
i

ix
N

x 1}{μ̂

( ) 2)ˆ(
1

1}{ˆ μ−
−

= ∑
i

ix
N

xV

( )
2

}{ˆ minmax xxx +
=μ

Formal Definition:
An estimator is a quantity extracted as a function of the data which 
gives a numerical value for a property of the parent distribution. 

e.g. some possible estimators for the mean of a set of N points 
{x} = x1, x2, x3 … xN:

e.g. estimators for the variance of a set of N points {x}:

…. some estimators are better than others!
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Desired Properties of Estimators
1. Consistency. An estimator is consistent if it tends towards 

the true value as N→∞. 

2. Unbiased. An estimator is unbiased if it’s expectation 
value is equal to the true value.

3. Efficient. An estimator is efficient if it’s variance is small.
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• Of examples on previous page, 
optimal choices are …
• Easy to see that these are 
consistent and unbiased. 
• Efficiency is more complicated 
(see `Minimum Variance Bound’ in text books)
Often, we want to “estimate” much more complicated things
than means and variances – e.g. αs from lots of different
observables in jet data … need generalised estimation methods



The Likelihood Function
Suppose we have a set of data points {x1, x2, x3 … xN} taken 
from a “parent” probability distribution characterised by a
parameter A, to be estimated.

e.g. A might be the Higgs mass and {xi} might be LEP and 
TeVatron data which we believe obey the Standard Model

Define P(x1 ; a) = Probability of getting the result x1 if A=a
Then the `likelihood’ of A=a is just the combined probability 
that we get the set of points {xi} if A=a … i.e…
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Maximum Likelihood
To get best estimate     for a, just maximise the (log) likelihood of 
obtaining measured data with respect to a

… well defined general estimation method…

The maximum likelihood estimator is 
the value of a which makes the probability 
of the observed results a large as possible.
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Maximum likelihood has lots of nice properties ….
…. consistent, unbiased and efficient for large N
…. Invariant: i.e, if we extract â and u is a function of a, û=u(â) 
…. nice programs exist to do max / minimisation in real problems!



Numerical Max Likelihood Example

Suppose we have a sample {xi} = 0.89, 0.03, 0.50, 0.36, 0.49 …
… which we know comes from a parent distribution with 
P(x) α 1+a(x-0.5), but a is unknown.

We have P(0.89)=1+0.39a etc

Construct maximum likelihood:

lnL=ln(1+0.39a)+ln(1-0.47a)+ln(1)
ln( 1-0.14a)+ln(1-0.01a)+const.

Plot this to see it has a maximum 
Near a=0.6.

So log likelihood estimator is â~-0.6

(ignoring const.)



Important Example: Combining Measurements 
of the Same Quantity with Different Errors

What is our best estimate of a quantity, which has been 
measured several times (values xi) with different errors σi ?
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For each measurement, i, 

So the log likelihood is:

Differentiating: 
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Best estimate of mean is to weight 
the usual average by (variance)-1 …

Can also show that
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(“the weighted mean”)
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