Last Lecture: e p Facilities, HERA and DIS

Today's Lecture: pp and ppbar Physics: TeVatron and the LHC

Helicopter parents Hadley Freeman Whisper therapy Puddings on wheels

Reminder: Livingstone Plot

Particle physics energies and timescales....

Recent History of pp Machines

- 1971 CERN `Intersecting Storage Rings' >= 31GeV x 31GeV
- Mid 1970s CERN SPS and Fermilab `Main Ring` 200-400 GeV fixed target. Circular machine used to accelerate only, fast losses! Fermilab discovered b quark (1977)
- 1981 CERN SPS converted to ppbar collider, 270 x 270GeV UA1 (UA2) at CERN discover W, Z, win nobel prize - Fermilab upgraded in energy first, then built a collider
- 1985- Fermilab TeVaton collider, now at 1TeV x 1TeV
- 2008- CERN LHC 7TeV x 7TeV

An interesting question ...

- Top quark mass is ~ 175 GeV
 SppS Centre of mass energy was 540 GeV
 ... why didn't the SPS discover the top quark?
 - ... the answer lies in the parton densities of the proton
 - ... and the relatively low Luminosity of the SppS
 - ... and the difficult backgrounds

The Quark and Gluon Content of the Proton

 $u_{\rm v}$ and $d_{\rm v}$ are valence quarks S is sea, g is gluon

Detailed and precise HERA charged and neutral current data lead to new understanding of the proton and QCD, especially at low x ... just How big can the gluon density become?!?

Tevatron (Fermilab, Chicago)

Fermilab's Accelerator Chain

FERMILAB'S AG

Run I (1992-6) Lumi = 125 pb⁻¹

Run I (2001-6) Lumi = 1.2 fb⁻¹

Run I (2006-9) Lumi = 5-8 fb⁻¹

Colliding beam experiments CDF and DO

• Multi-purpose facility, also providing proton, pion and neutrino beams to fixed target facilities (e.g. Minos)

Proton proton collision are, err, complex

... but at any given time, they provide the highest available energies, so usually the best sensitivity to new physics.

c.f. synchrotron radiation power ~ $1/m^4$... electron beam energies are limited!

... but pp detector requirements are tough to meet, especially at the LHC, where several events per bunch crossing!

Variables to describe Hadron Collider physics

... need to find Lorentz invariants, which are (ideally) also invariant under boosts in z direction (don't always know x_1, x_2)

As well as azimuthal angle, use transverse momenta: $p_T = p \sin \theta$

Polar angles are often given in terms of the pseudorapidity η =- ln tan $\theta/2$,

e.g. particle producion roughly constant as a function of y ... and Δy is Lorentz invariant

The joys of large transverse momentum (or how to see the wood for the trees)

A two jet event at the Tevatron (CDF)

Top Discovery at the Tevatron (1995) Observed ttbar where $t \rightarrow bW$ (~100% branching ratio)

... or 2 jets, 2 leptons, ptmiss (2v, so can't reconstruct mass)

Top Signal then, now and future ...

Mass distribution 1995, 1 lepton, 4 jets, missing p_T

... "mass about 170 GeV"

Many contributing channels 178 +/-3 (stat) +/-3 (sys) GeV

LHC will get top mass to <1 GeV

More (very selected) Tevatron Physics

Et 202.8 GeV

Dielectron mass 375

Jet cross sections varying over 7 orders of magnitude and reaching ~500 GeV beautifully described by QCD

High sensitivity to new physics this one (and ~all others) described by standard model As a $\gamma\gamma$ interaction