Last Lecture: Gaseous Tracking Detectors

Today: 1) `Solid State' tracking detectors 2) Track reconstruction

(H1 Backward Silicon Tracker)

Semiconductor Detector Context

Very Precise Tracking with Semiconductors

- 1) More precise track momentum reconstruction
- 2) Secondary vertex identification and measurement
 - Strong decay lifetime ~10⁻²³ s, weak decay ~10⁻¹² s
 - If particle moves relativistically, can travel far enough for weak decay vertex to be reconstructed just!
 ... use to identify heavy flavour hadrons decaying weakly and to measure their lifetimes

Decay	c τ (μ m)
D ⁰	123
D+/-	312
Bo	461
B+/-	501

- c.f. Beam profile ~ 100 μm x 25 μm
- Need sub-100 μm resolution

- Not possible with gaseous track detectors

A Secondary Vertex Example

A (very little) bit of Solid State Physics · Semiconductors are solids with small E band gaps, which conduct electrically conductance band if electron-hole pairs are produced in •e their lattice structure. E, This could happen due to: - Exciting electrons with Οh thermal energy (Boltzmann distⁿ) valence band - A passing ionising particle • A solid state device detects the e-h pairs ("free carriers") produced by passing charged particles ... 300 um 1 cm Thermally excited e-h pairs are a nuisance ... this much silicon contains $\sim 4.5 \times 10^8$ free carriers at room temperature. A minumum ionising particle produces ~3.2×10⁴

A Semiconductor Detector

The solution is to make a
 <u>`pn junction'</u> (like a diode), but
 with a `strong reverse bias',
 increasing energy required to
 produce e-h pairs thermally.

Full detector is then

`depletion region' ... electron-hole

pairs ONLY appear when a charged particle passes by.

• For our purposes, just another ionisation detector, but using thin layers of (solid) semiconductor instead of gas electron-hole pairs drift to electrodes in E field to give sign

	Ideal	Gas	Solid
Density	Low	Low	High
Atomic Number	Low	Low	Moderate
Energy to Ionise	Low	Moderate	Low
Signal Collection	Fast	Moderate	Fast

electrodes in E field to give signal ... precise due to small size

Semiconducting Materials

Various types available...

- Germanium, GaAs used in the past
- Diamond interesting but expensive!
- Silicon more or less universally used for modern HEP applications ...

... Good availability (though ATLAS and CMS are demanding!)

... Small band gap (3.6eV makes an e-h pair, c.f. 30 eV in a gas detector) ... Large scale designs with strange shapes are possible.

IIIA	IVA	VA	
5 B	6 C	7 N	
Boron	Carbon	Nitrogen	
10.811	12.0107	14.00674	
13 Al	14 Si	15 P	
Aluminum	Silicon	Phosph.	
26.981538	28.0855	30.973761	
31 Ga	32 Ge	33 As	
Gallium	German.	Arsenic	
69.723	72.61	74.92160	
49 In	50 Sn	51 Sb	
Indium	Tin	Antimony	
114.818	118.710	121.760	
81 TI	82 Pb	83 Bi	
Thallium	Lead	Bismuth	
204.3833	207.2	208.98038	

Main difficulty ... radiation hardness $\ensuremath{\mathfrak{S}}$

Silicon Microstrip Detector

x direction info by segmenting p doped layer, pitch ~ 25 μ m. ... resolution can be very good: σ ~ pitch / sqrt(12)

- Strips are several centimetres long in y direction ... perpendicular double layers for (x,y) dimensional info

H1 Central Silicon Tracker (2 sided strips)

This little beast has 100,000 readout channels and it is far from state-of-the-art ...

Silicon Detectors at the LHC - a new scale!

... e.g. CMS built entire tracking region from silicon (does this explain why it weighs so much?!?!)

How to Get 2(3) Dimensional Silicon Tracking

Double-sided Strip Detector

Also dope and segment the `bottom' of the N-type material with orientation perpendicular to the top!

Pad Dectors

• Build detector with small square pads instead of strips

• Pads are typically 1mm x 1mm, so similar resolution to strips

• Readout electronics attached directly to detector

Pixel Detectors

Much smaller version of pad detector (e.g. $150 \ \mu m \ x \ 150 \ \mu m$) Requires sophisticated readout! – Electronics with same geometry connected to each pixel with bump bonding techniques to get the

chip pixel unit cell

⁸0lder 6_{ump}

signal out!

sensor

· se

180 µm

silicon sensor 250 µm

readout chip

ATLAS Pixel Detector

• $\sim 2.0 \text{ m}^2$ of sensitive area with 0.8×10^8 channels

Silicon pixels $(50 \ \mu m \times 300 \ \mu m)$

Particle Momentum Reconstruction

- Consider motion in rø plane (B field uniform and parallel to beam)
- Moving charged particle feels force
 F = q B x v
- Force always perpendicular to motion, so changes direction, but not kinetic energy
- If field is uniform, motion in $r\phi$ plane must be a **circle**. Radius is $\mathbf{r} = \mathbf{p}_t/\mathbf{qB}$

With B in Tesla, pt in GeV and r in metres, $r=p_t/0.3B$

- Motion in z direction is constant (no effect from parallel B field)
- So 3 dimensional trajectory is a helix.

Example 1

Example 2

How it works in Practice: the Sagitta

- Drift chamber gives a track segment about chord of the circle described by the particle.
- In practice, measure the <u>sagitta s</u> in order to reconstruct p_t

 $\mathbf{s} = \mathbf{L}^2 / \mathbf{8r} = \mathbf{q}\mathbf{B}\mathbf{L}^2 / \mathbf{8p}_t$

 \dots hence obtain p_t from s \dots

 $\sigma(\mathbf{p}_t)/\mathbf{p}_t = \sigma(s)/s = [8 / (\mathbf{q} \mathbf{B} \mathbf{L}^2)] \cdot \mathbf{p}_t \cdot \sigma(s)$

- resolution degrades αp_t
- $\sigma(s)$ depends on number of wires (points in track segment)

For an accurate pt measurement, want low pt

high B field long chord, L lots of hits on segment lots of separate segments

Momentum Uncertainty for Trackers

- For high momenta, uncertainty is dominated by sagitta measurement

- As momentum becomes very small, multiple elastic Coulomb scattering takes over -> lots of small deflections in angle, no energy loss

-Error on the momentum measurement is independent of p

$$\frac{\sigma(p)}{p_{\tau}} \bigg|^{MS} = 0.045 \frac{1}{B\sqrt{LX_0}}$$

X₀ is the radiation length of material

If you want precision, minimise dead material e.g. in beampipe!

BG info: Doped Semiconductors and Depletion

Holes are majority carriers

- Placing p and n types together leads to diffusion ...space charge builds up,
 →depletion region stopping further transfer. (a DIODE).
- Apply forward bias (voltage) to make it conduct
- Apply backward bias to increase

depletion region & remove all free thermal carriers... solid state detector!

Si - atom

donor atom

