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Lecture 3: Propagators 
 0  Introduction to current particle physics  

 1  The Yukawa potential and transition amplitudes 

 2  Scattering processes and phase space 

 3  Feynman diagrams and QED 

 4  The weak interaction and the CKM matrix 

 5  CP violation and the B-factories 

 6  Neutrino masses and oscillations 

 7  Quantum chromodynamics (QCD) 

 8  Deep inelastic scattering, structure functions and scaling violations 

 9  Electroweak unification: the Standard Model and the W and Z boson 

 10  Electroweak symmetry breaking in the SM, Higgs boson 

  11  LHC experiments 
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Recap of Lecture 2 : 

Today: calculate scattering amplitude for particles incident 
on a potential, taking Yukawa potential as an example 

Mass and range are related: the larger the mass exchanged, the 
shorter the range … and if m = 0, R = ∞ (though with 1/r2 decay of 
the force strength)   

Yukawa potential 
(spherical symmetric 
static case) 

m=1/R = mass of particle carrying the force  
R = range 
g0 = fundamental strength (coupling) of the force  

 A massive spinless particle being exchanged as part of a force field 
can be described by a quantum mechanical wavefunction that dies 
faster than 1/r  

€ 

ψ(r) =
g0
4πr

e−mr
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(From the end of Lecture 2 …) 
Yukawa Potential 

In case of photon, 
electric potential, 
m=0 and R=∞ 

For m>0, force has 
range R: beyond R, V 
tends to zero quickly  
because of 
exponential factor 

€ 

ψ(r) =
g
4πr

e−mr

The larger the mass exchanged,  
the shorter the range … 
… and now we have a model for 
force strength versus distance 
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Scattering of Plane Waves 

Much of particle physics is about calculating how likely things are to 
happen (decay probabilities, reaction cross sections …) 

These correspond to transitions between quantum mechanical states 

Consider transition of an incoming particle i to a final state particle f 
due to the presence of a force field U(r), which we’ve identified with 
the Yukawa potential 

Incident and scattered particles can be described by plane waves  
à same solution for Schrodinger and Klein-Gordon …  

source Scattering angle, θ

Ψi 

Ψf 

V(r) 

€ 

ψ =ψ0e
i(p.x−Et ) =ψ0e

−ip µx
µ
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Scattering: Some assumptions / approximations 

-  Target particles separated by distances >> De Broglie 
wavelength of incident particles            no interference 

-  Target low density             no multiple scattering 

-  Collision energy high             binding energy in target 
neglected 

-  Beam intensity low         mutual interactions in beam 
neglected 

- Force is weak enough that single-exchange dominates: 
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Transition Amplitudes 

- Probability of transition from i to f for a single particle passing potential 
V(r) is described by a transition amplitude (aka matrix element), Mfi  
- In Born approximation / 1st order perturbation theory: 

€ 

Mfi = ψ
f

*∫ V (r)ψ i d
4x = ψ

f
|V (r) |ψ i

- For plane waves in and out  

pi 
pf 

q 

q = 4-momentum transfer 

€ 

Mfi = eip f , µ  x µ

∫ V (r)e− ipi , µ  x µ

d4x = e−iq µ  x µ

∫ V (r)d4x

NB: Mfi is (the 4D generalisation of) 
the Fourier transform of the target 
potential, V(r) … just as in optical 
diffraction patterns.  

€ 

qµ = pi,µ − pf ,µ
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Solution for the Scattering Amplitude 

Substituting Yukawa potential: 

See handout for how to 
do this integral (non- 
Examinable) 

€ 

ψ(r) =
g0
4πr

e−mr

€ 

V (r) = gψ(r) =
gg0
4πr

e−mr

… where g is the fundamental strength of coupling of the incoming  
particle to the force field. 

€ 

Mfi =
gg0

4π
e− iq µ  x µ

∫ 1
r
e−mrd4x

€ 

Mfi =
gg0

qµq
µ −m2
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The Propagator 

€ 

Mfi =
gg0

q2 −m2

- g and g0 are the coupling constants describing the fundamental 
strength of the interaction à not known a priori 

- 1/(q2+m2) is known as the `propagator’ and describes the force 
- in terms of the mass of the exchange particle and the squared  
4-momentum transfer, as described 
by the Yukawa potential 

- This is the entire basis of Feynman 
diagrams, as we will see in much more 
detail in the following lectures 

- Caveat: we started from the Klein-Gordon 
equation, so we’re still neglecting spin 

g

g0

Propagator 
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A Special Case – Zero Range Approximation 

In the `zero-range approximation’, m2 >> q2 and the propagator 
reduces to a constant  1/m2 

We then have a point-like `contact interaction’ with a  
single dimensioned coupling, which appears to be a constant 

Classic example is the weak interaction  
in nuclear β decay, where q2 is 
very small compared with MW

2 

Fermi constant GF = g2/MW
2=1.166 x 10-5 GeV-2 

Propagator … 
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Summary 

We have seen how to calculate a matrix element 
which consists of a propagator times the two “charges” 
of the scattering particles : 

The ingredients are now in hand to calculate the quantities 
we measure in particle physics: 
cross-sections, angular distributions, decay rates etc. 

… but first we need to convert transition amplitudes into  
measurable quantities such as event rates and cross sections 
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A Note on Signs 
- Every text book seems to have a different convention on the sign of  
qµ=±(pi,µ-pf,µ) and on the relative sign of energy and  
Momentum terms in the metric tensor (+---) or (-+++) 

- There is no absolute answer to these questions – only squares of these 
- choices are ever physically observable.   

The handout on `Fourier transform of Yukawa potential’ is a 3D  
calculation … q2 there is the 3-momentum squared. Then the propagator 
is correctly written as 1/(q2+m2) 

When we go to 4 dimensions, with our convention of q2=E2-p2, the  
relative minus sign leads to a change of sign.  

The propagator is therefore correctly stated as … 

Note that for a “space-like” or “exchange” particle, as we have here:  
q2<0 … so q2-m2<0 … but propagators always get squared in  
calculating observables such as cross sections, which are positive-definite 


