Alternative Futures for CERN: The Large Hadron-electron Collider

Paul Newman (Birmingham)

Alternatives Meeting Imperial College, 24 September 2024

An overview of the project, its context & physics programme

... see also Oliver: Nick, Loukas, Greg:

The LHeC machine Expert consideration of Higgs, EW and flavour/top capabilities

arXiv:2007.14491

Max Klein 13/5/1951 - 23/8/2024

Scattering Experiments Exploring Matter

Rutherford, 1926

"It would be of great scientific interest if it were possible to have a supply of electrons ... of which the individual energy of motion is greater even than that of the alpha particle."

<u>1950s, Hofstadter, 200 MeV electrons</u> <u>on fixed targets</u> First observation of finite proton size

1969, SLAC, 20 GeV electrons on fixed targets

Absence of dependence of (suitably expressed) cross section on q² (= squared 4 momentum transfer) implies scattering from point-like quarks The only ever collider of electron with proton beams: √s_{ep} ~ 300 GeV

- Equivalent to **50 TeV** electrons on fixed target

... Resolved dimension ~ 10⁻²⁰ m

→ Source of much of our knowledge of proton (longitudinal) structure extending to partons of x<10⁻⁴ mom^m fraction

BUT ... → Only ~0.5 fb⁻¹ per experiment → No deuterons or nuclei → No polarised targets

Proton PDFs from HERA (HERAPDF2.0)

Overview: LHeC and Energy Recovery Linacs

LHeC (>50 GeV electron beams) $E_{cms} = 0.2 - 1.3$ TeV, (Q²,x) range far beyond HERA run ep/pp together with the HL-LHC (\geq Run5)

Recirculating Energy-Recovery Linac
 (ERL) colliding with LHC (or FCC) hadrons

'Sustainable' acceleration(~100 MW; similar to LHC today)

- Technology development for electron machines or injectors

- ERL Prototype (PERLE @ IJCLab/Orsay) Implementation started. First stage (one turn) by 2028.

Running Scenarios Considered in CDR

- $e^{\pm}p$ 50 GeV x 7 TeV with lepton polarization +0.8 / 0 / -0.8

Parameter	Unit	Run 5 Period	Run 6 Period	Dedicated
Brightness $N_p/(\gamma \epsilon_p)$	$10^{17} { m m}^{-1}$	2.2/2.5	2.2/2.5	2.2/2.5
Electron beam current	${ m mA}$	15	25	50?
Proton β^*	m	0.1	0.7	0.7
Peak luminosity	$10^{34}{ m cm}^{-2}{ m s}^{-1}$	0.5	1.2	2.4
Proton beam lifetime	h	16.7	16.7	100
Fill duration	\mathbf{h}	11.7	11.7	21
Turnaround time	h	4	4	3
Overall efficiency	%	54	54	60
Physics time / year	days	160	180	185
Annual integrated lumi.	fb^{-1}	20	50	180

[Pile-up ~0.1]

Running concurrently with pp at HL-LHC:

... integrated lumi of 20 fb-1 per year at Run 5 \rightarrow 50 fb⁻¹ initial dataset ... integrated lumi of 50 fb-1 per year at Run 6 \rightarrow few 100 fb⁻¹ total @ HL-LHC

Running in standalone ep mode:

... integrated lumi of 180 fb-1 per year $\rightarrow 1 \text{ ab}^{-1}$ total target in a few years

- *eA* 50 GeV x 2.76 TeV at 10 fb-1 per year

LHeC Physics Targets and Detector Implications

Standalone Higgs, Top, EW, BSM programme

→ General purpose particle physics detector → Good performance for all high p_T particles → Heavy Flavour tagging

Precision proton PDFs, including very low x parton dynamics in ep,eA → Dedicated DIS exp't → Hermeticity → Hadronic final state

resolution for kinematics

- \rightarrow Flavour tagging / PID
- \rightarrow Beamline instruments

Detector Overview (as in 2020 CDR Update)

Compact 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)

<u>Hermetic</u>

<u>Beamline also</u> well instrumented

'Could be built now', but many open questions:

- A snapshot in time, borrowing heavily from (HL)-LHC (particularly ATLAS)
- Possibly lacking components for some ep/eA physics (eg. Particle ID)
- Not particularly well integrated or optimized

... Synergies with EIC, LHCb, ALICE, future lepton colliders still to be explored

Detector technologies build on ¹[®]HC ⁴[®]nd EIC and inform future lepton colliders

<u>e.g. Silicon tracker</u> design in CDR

- HV-CMOS MAPS with bent / stitched wafers (as ALICE and ePIC) and semi-elliptical inner layers to cope with synchrotron fan \rightarrow ~20% X₀ / layer up to η ~4.5

e.g. Forward proton spectrometer in cold region (~420m)?

 Reuse of technology proposed for LHC, accessing protons scattered at very low momentum loss

11

The FP420 R&D Project: Higgs and New Physics with forward protons at the LHC

Revolutionary Proton PDF Precision

e.g. High x Gluon Density

- → Facilitates LHC / FCC-hh precision measurements and BSM searches
- \rightarrow Elucidates novel very low x dynamics
- \rightarrow Simultaneously α_{s} to 0.2% experimental error

LHeC PDFs Empowering LHC

- Theory uncertainty on LHC Higgs production cross section improves dramatically compared with current PDF and α_s knowledge.
- PDF-related systematics on EW measurements are significant (e.g. LHeC enables $\sin^2\theta \rightarrow 0.03\%$ and reduces δ_{PDF} on $M_W \rightarrow 2$ MeV in ATLAS studies)

- Many BSM scenarios ultimately limited by high x PDFs

LHeC (SM) Higgs Programme

Yields for 1ab⁻¹ (LHeC), 2ab⁻¹ (FCC-eh) P=-0.8

		Number of Events			
		Charged Current		Neutral Current	
Channel	Fraction	LHeC	FCC-eh	LHeC	FCC-eh
$b\overline{b}$	0.581	114500	1208000	14000	175000
W^+W^-	0.215	42300	447000	5160	64000
gg	0.082	16150	171000	2000	25000
$ au^+ au^-$	0.063	12400	131000	1500	20000
$c\overline{c}$	0.029	5700	60000	700	9000
ZZ	0.026	5100	54000	620	7900
$\gamma\gamma$	0.0023	450	5000	55	700
$Z\gamma$	0.0015	300	3100	35	450
$\mu^+\mu^-$	0.0002	40	410	5	70
$\sigma[{ m pb}]$		0.197	1.04	0.024	0.15

- Dominant production mechanism is charged current (WW)

- Easily distinguished from sub-dominant neutral current (ZZ)

- Full details of simulated analyses of multiple channels in CDR

ep Standalone Higgs Sensitivity

- CC Signal strength uncertainties at 1% level for $H \rightarrow b\overline{b}$, 7% for $H \rightarrow c\overline{c}$...

Including initial-state couplings
 in *K*-framework analysis leads
 to sub-1% *WWH* coupling precision

Sensitivity in Combination with HL-LHC

- Comparison of proposed future colliders in combination with HL-LHC [JHEP 01 (2020) 139]

- Compared with HL-LHC, κ_b factor 3.5, κ_W factor 4, κ_Z factor 2, κ_c first measurement ...

- HL-LHC \rightarrow LHeC about same as LHC \rightarrow HL-LHC

Uncertainty				
HL-LHC	LHeC	HL-LHC+LHeC		
1.7	0.75	0.50		
1.5	1.2	0.82		
2.3	3.6	1.6		
1.9	7.6	1.4		
10	-	10		
-	4.1	3.6		
3.3	_	3.1		
3.6	2.1	1.1		
4.6	-	4.4 16		
1.9	3.3	1.3		
	HL-LHC 1.7 1.5 2.3 1.9 10 - 3.3 3.6 4.6 1.9	HL-LHC LHeC 1.7 0.75 1.5 1.2 2.3 3.6 1.9 7.6 10 - - 4.1 3.3 - 3.6 2.1 4.6 - 1.9 3.3		

Electroweak Gauge Bosons

LHeC: σ(H)~ 0.2pb σ(W)~ 3pb σ(Z)~ 2pb σ(t)~ 1pb

... W, Z and (single) top samples ~10⁶ events each

to light quarks tightly constrained from t-channel Z exchange

Example Top Physics at LHeC

[~10⁶ single top events]

<u>CKM</u>

Cut-based simulation in hadronic channel

- \rightarrow 1% V_{tb} precision (now ~5%)
- \rightarrow Improved V_{ts}, V_{tb} constraints

FCNC

Comparable sensitivity to HL-LHC in $t_{\gamma}c$, $t_{\gamma}u$ coupling sensitivities

Summary: a 2040s Bridging Opportunity?

LHeC is not the next major new collider for CERN

-

LHeC could be an impactful final upgrade to LHC ...

- potentially 'affordable' on required timescale
- technically realisable for late 2030s
 (ERL technology = critical path)
- extending energy frontier sensitivity within a few years of running
- complementing and enabling HL-LHC programme
- ensuring continuity of collisions and scalar sector exploration in the 2040s
- exploring SRF, ERL options & detector technologies

... as a testing ground (injector?) for a future major facility

"Circles in a circle", Wassily Kandinsky (1923), Philadelphia Museum of Art