Low x Physics and Saturation: From HERA to Future DIS and the LHeC

Mandalaz

RIKEN BNL Research Center Workshop April 26-28, 2017 at Brookhaven National Laboratory

Low x Physics at HERA: the "Pathological" Gluon

Figure 5: The position of the critical line in the (x, Q^2) -plane. The narrow hatched area corresponds to the acceptance region of HERA. The wide hatched region indicates the range for a future 1 TeV ep-collider. The boundaries are lines of constant y.

1998: Low x HERA data are well fitted in (dipole) models that include saturation effects - x dependent "saturation scale", $Q_s^2(x)$

Saturation and DGLAP PDF fits

e.g. NNPDF: NLO DGLAP description deteriorates when adding data in lines $Q^2 > Ax^{-0.3}$ parallel to 'saturation' curve in x/Q^2 .

Final HERA-2 Combined PDF Paper: "some tension in fit between low & medium Q² data... not attributable to particular x region" (though kinematic correlation)

... something happens, but interpretation?

Low x Saturation in Diffractive Data?

- Elastic J/ Ψ in γp ...
- No evidence for change in shape at high W (i.e. low x),

even at LHC (t dependence yet to be exploited)

- Rather flat diffractive/inclusive ratio and failure of diffractive PDF fits to data below $Q^2 \sim 5 \text{ GeV}^2$ best described by dipole models incorporating saturation ...

BOTTOM LINE ... HERA not conclusive on location or dynamics of onset and LHC has not given greater clarity

Problem of Inclusive Data in 1 Dimension

Accessing saturation region at large Q^2

2-pronged approach: EIC and LHeC

Enhance target `blackness' by: ep 1) Probing lower x at fixed Q^2 in ep eA [evolution of a single source] DILUTE REGION 2) Increasing target matter in eA [overlapping many sources at fixed kinematics ... Density ~ $A^{1/3}$ ~ 6 for Pb ... worth 2 orders of magnitude in x]

... e.g. LHeC reaches saturated region in both ep & eA inclusive data according to models

In A

[fixed Q]

DENSE REGION

n 1/x

Baseline Design (Electron "Linac")

- Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Colliding with $E_p = 7$ TeV from LHC (or even 50 TeV from FCC) and equivalent ion beams

- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures
 [Energy recovery Linac prototype planned
 @ Orsay]

- ep lumi → 10³⁴ cm⁻² s⁻¹
- \rightarrow ~100 fb⁻¹ per year \rightarrow ~1 ab⁻¹ total
- eD and eA collisions have always been integral to programme
- e-nucleon Lumi estimates ~ 10³¹ (10³²) cm⁻² s⁻¹ for eD (ePb)

LHeC Physics at 10³⁴ cm⁻²s⁻¹

е

 $\gamma^*(\mathbf{Q}^2)$

q

ĝ

Elastic J/\Psi Kinematics

• At fixed \sqrt{s} , decay muon direction is determined by W = $\sqrt{s_{\gamma p}}$

• To access highest W, acceptance in outgoing electron beam direction crucial

LHeC Detector Design Overview

- Present size 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
- Forward / backward asymmetry reflecting beam energies 12
- Demanding tracking \rightarrow high fraction of pixels, wide acceptance

Detector Details

 Long tracking region (pixels + strips) → 1° electron hits
 2 tracker planes

Dipoles Hadronic Calorimeter HAC Lar / Tile calorimeter Forward Backward leaning heavily on LHC HCAL CST BST HCAL • FEC BEC EMC Electromagnetic Calorimeter experience Solenoid Electron Beamline insrumentation 420 z (m) 100 -120 Tagger Zero Degree Proton -62 Photon considered from outset. Spectrometer Calorimeter Tagger

Intact Proton Selection Methods beyond HERA

- Allows t measurement, but limited by stats, p- tagging systs

2) Select Large Rapidity Gaps

-Limited by control over proton dissociation contribution

- Methods have very different systematics \rightarrow complementary
- In practice, method 2 yielded lasting HERA results, because of statistical and kinematic range limitations of Roman pots
- Roman pots mainly contsrained t distributions
- LHeC & EIC different \rightarrow higher lumi + pot design from outset

- Proton spectrometer uses outcomes of FP420 project (proposal for low ξ Roman pots at ATLAS / CMS - not yet adopted)
- Approaching beam to 12σ (~250 μ m) tags elastically scattered protons with high acceptance over a wide x_{IP} , t range

-These detectors came of age at LHC (TOTEM, AFP) ...

- We should build full acceptance forward detector systems with them

(NEW) DGLAP PDF Fits to LHeC Pseudo-Data

-Simulated NC, CC `pseudo-data' with reasonable assumptions on systematics (typically 2x better than H1 and ZEUS at HERA).

- NEW: Luminosity increased since CDR \rightarrow up to 1ab⁻¹
- NEW: Fitting framework \rightarrow as for HERAPDF 2.0 at NLO

source of uncertainty	error on the source or cross section
scattered electron energy scale $\Delta E_e^\prime/E_e^\prime$	0.1 %
scattered electron polar angle	0.1 mrad
hadronic energy scale $\Delta E_h/E_h$	0.5 %
calorimeter noise (only $y < 0.01$)	1-3%
radiative corrections	0.3%
photoproduction background (only $y > 0.5$)	1 %
global efficiency error	0.7 %

- NLO DGLAP fit using HERAPDF2.0, including:
 - LHeC NC and CC e⁺p and e⁻p cross sections
 - NEW: HERA-1 and HERA-2 final combined H1+ZEUS data
 - Fixed target BCDMS data with W>15 GeV
 - NEW: HERA jet and various Tevatron / LHC data

Low x Gluon with LHC, with and without LHeC

Standard LHC channels do not help much:

- ATLAS and CMS constraints as currently included in PDF fits (jets, top) don't extend below $x \sim 10^{-3}$.
- Other channels may help if theoretical issues can be overcome (LHCb c,b, maybe even exclusive J/Ψ)
- Current knowledge basically comes from HERA: stops at x~5.10⁻⁴
- LHeC gives constraints to $x \sim 10^{-6}$ from scaling violations and F_L

Low x Sea with LHC, with and without LHeC

LHC channels help, but not on same level as LHeC:

- ATLAS and CMS low mass Drell-Yan data have an impact
- Also potentially LHCb Drell-Yan
- Other channels may help (see eg ALICE direct photon / FOCAL)
- LHeC goes to $x \sim 10^{-6}$, directly from F_2

... this is what DIS does best ...

FCC-eh Data have also been included

$ \begin{array}{c ccccc} \mathrm{NC} & 60 & (60) & 50 & (7) & -0.8 & -1 & 1000 \\ \mathrm{CC} & 60 & (60) & 50 & (7) & -0.8 & -1 & 1000 \\ \mathrm{NC} & 60 & (60) & 50 & (7) & +0.8 & -1 & 300 \\ \mathrm{CC} & 60 & (60) & 50 & (7) & +0.8 & -1 & 300 \\ \mathrm{NC} & 60 & (60) & 50 & (7) & 0 & +1 & 100 \\ \mathrm{CC} & 60 & (60) & 50 & (7) & 0 & +1 & 100 \\ \mathrm{NC} & 20 & (60) & 50 & (7) & 0 & -1 & 100 \\ \mathrm{NC} & 20 & (60) & 7 & (1) & 0 & -1 & 100 \\ \mathrm{CC} & 20 & (60) & 7 & (1) & 0 & -1 & 100 \\ \end{array} $	NC/CC	$E_e [GeV]$	$E_p [TeV]$	P(e)	charge	lumi. $[fb^{-1}]$	
$\begin{array}{c cccccc} CC & 60 & (60) & 50 & (7) & -0.8 & -1 & 1000 \\ \hline NC & 60 & (60) & 50 & (7) & +0.8 & -1 & 300 \\ CC & 60 & (60) & 50 & (7) & +0.8 & -1 & 300 \\ \hline NC & 60 & (60) & 50 & (7) & 0 & +1 & 100 \\ CC & 60 & (60) & 50 & (7) & 0 & +1 & 100 \\ \hline NC & 20 & (60) & 7 & (1) & 0 & -1 & 100 \\ CC & 20 & (60) & 7 & (1) & 0 & -1 & 100 \\ \hline \end{array}$	NC	60(60)	50(7)	-0.8	-1	1000	o noc nol
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CC	60(60)	50(7)	-0.8	-1	1000	e-, neg. por.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NC	60(60)	50(7)	+0.8	-1	300	e- not nol
$ \begin{array}{c ccccc} NC & 60 & (60) & 50 & (7) & 0 & +1 & 100 \\ CC & 60 & (60) & 50 & (7) & 0 & +1 & 100 \\ \hline NC & 20 & (60) & 7 & (1) & 0 & -1 & 100 \\ CC & 20 & (60) & 7 & (1) & 0 & -1 & 100 \\ \end{array} $	CC	60(60)	50(7)	+0.8	-1	300	e-, pos. poi.
CC $60 (60)$ $50 (7)$ 0 $+1$ 100 e^{+} , unpointNC $20 (60)$ $7 (1)$ 0 -1 100 low energyCC $20 (60)$ $7 (1)$ 0 -1 100	NC	60(60)	50(7)	0	+1	100	et unnol
NC20 (60)7 (1)0 -1 100CC20 (60)7 (1)0 -1 100	$\mathbf{C}\mathbf{C}$	60(60)	50(7)	0	+1	100	e, anpor.
CC 20 (60) 7 (1) 0 -1 100 low energy	NC	20(60)	7(1)	0	-1	100	low opendy
	CC	20(60)	7(1)	0	-1	100	tow energy

* second and third columns show FCC-eh (LHeC)

error assumptions: elec. scale: 0.1%; hadr. scale 0.5% radcor: 0.3%; γp at high y: 1% uncorrelated extra eff. 0.5%

(M.Klein)

Some improvement in precision

Main impact is direct coverage with data down to $x=10^{-7}$.

Why this is already dangerous at the LHC - Use of PDFs based purely on DGLAP Q² evolution at low(ish) x, high Q² at the LHC will give incorrect results if there are saturation effects in the low x, low Q2 data ...

- Convergent solutions after DGLAP evolution can already be misleading at the LHC ... worse at lower $x \rightarrow$ LHeC, FCC-eh $\stackrel{20}{...}$

LHeC Sensitivity to Different Saturation Models

With 1 fb⁻¹ (1 month at 10^{33} cm⁻² s⁻¹), F₂ stat. < 0.1%, syst, 1-3% F_L measurement to 8% with 1 year of varying E_e or E_D

F_2 and F_L pseudodata at $Q^2 = 10 \text{ GeV}^2$

• LHeC can distinguish between different QCD-based models for the onset of non-linear dynamics

... but can satⁿ effects hide in standard fit parameterisations?

Can Parton Saturation be Established in ep @ LHeC?

Simulated LHeC F_2 and F_L data based on an (old) dipole model containing low x saturation (FS04-sat)... Try to fit in NLO DGLAP ... NNPDF (also HERA framework) DGLAP QCD fits work OK if only F_2 is fitted, but cannot accommodate saturation effects if F_2 and F_1 both fitted

• Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 v F_L$ in ep or F_2 in ep v eA

Exclusive / Diffractive Channels and Saturation

- 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon
- 2) Additional variable t gives access to impact parameter (b) dependent amplitudes
 - \rightarrow Large t (small b) probes densest packed part of proton?

Advantage of Diffractive DIS: Dipole Language

Inclusive Cross Section

$$\sigma_{T,L}(x,Q^2) = \int d^2 \mathbf{r} \int_0^1 d\alpha \, |\Psi_{T,L}(\alpha,\mathbf{r})|^2 \hat{\sigma}(x,r^2)$$

Diffractive DIS

$$\frac{d\sigma_{T,L}^D}{dt}\Big|_{t=0} = \frac{1}{16\pi} \int d^2 \mathbf{r} \int_0^1 d\alpha \, |\Psi_{T,L}\left(\alpha,\mathbf{r}\right)|^2 \hat{\sigma}^2\left(x,r^2\right)$$

3) Extra factor of dipole cross section weights DDIS cross section towards larger dipole sizes \rightarrow enhanced sensitivity to saturation effects.

Test Case: Elastic J/\Psi Photoproduction

- `Cleanly' interpreted as hard 2g exchange coupling to qqbar dipole
- c and c-bar share energy equally, simplifying VM wavefunction relative to ρ

• Clean experimental signature (just 2 leptons)

• Scale $\overline{Q^2} \sim (Q^2 + M_V^2) / 4 > \sim 3 \text{ GeV}^2$ ideally suited to reaching Lowest possible x whilst remaining in perturbative regime

... eg LHeC reach extends to: $x_g \sim (Q^2 + M_V^2) / (Q^2 + W^2) \sim 5.10^{-6}$

• Simulations (DIFFVM) of elastic $J/\Psi \rightarrow \mu\mu$ photoproduction \rightarrow scattered electron untagged, 1° acceptance for muons (similar method to H1 and ZEUS)

Existing Diffractive J/ Ψ Photoproduction Data

Comparison with Dipole model Predictions

- e.g. "b-Sat" Dipole model - "eikonalised": with impact-parameter dependent saturation
- "1 Pomeron": non-saturating

• Significant non-linear effects expected in LHeC kinematic range.

With detailed exploration of ep and eA, including t dependences, this becomes a powerful probe!...

t Dependence of Elastic J/ ψ Photoproduction

- Precise t measurement from decay μ tracks over wide W range extends to $|t| \sim 2 \ GeV^2 \ and \ enhances sensitivity to \ saturation effects$

• Measurements also possible in multiple Q² bins

- Level of precision from ep and eA unlikely to be matched in UPC

- Incoherent ep diffraction still needs to be studied

Exclusive Diffraction in eA

Experimentally clear signatures and theoretically cleanly calculable saturation effects in coherent diffraction case (eA \rightarrow eVA)

Experimental separation of incoherent diffraction based mainly on ZDC

- Low $\beta \rightarrow$ Novel low x DPDF effects /non-linear dynamics? • High Q² \rightarrow Lever-arm for gluon, Flavour separation via EW
 - Still to do: detailed DPDF sensitivity study

New Region of Large Diffractive Masses Large x_{IP} region highly correlated with large Mx

- `Proper' QCD (e.g. large E_T) with jets and charm accessible
- New diffractive channels ... beauty, W / Z bosons
- Unfold quantum numbers / precisely measure new 1⁻ states

The More Distant Future: ep at a CERN Future Circular Collider

FCC-eh kinematics sensitive to diffractive structure in larger (β,Q²) range than (x,Q²) range sampled for the proton @ HERA!

-Similarly for masses and transverse momenta of jets.

- W range for VMs \rightarrow multi-TeV

Current Status of Nuclear Parton Densities

• Significant uncertainties in the nuclear PDFs (nPDFs)

- Especially the small-x (here, $x \leq 10^{-2}$) behaviour of nPDFs at smallish Q^2 are largely unknown may become a bottleneck e.g. in
 - distinguishing effects of non-linear evolution
 - precision studies of phenomena in heavy-ion collisions
 - calculations of cosmic-ray interactions in the air

EPPS Input Data

- Exciting phenomenology not matched by DIS data
- EPPS16 also uses various Drell-Yan, semi-inclusive π^0 in PHENIX dAu, W,Z, dijets in ATLAS and CMS
- Direct γ, B, D mesons at LHC promising if theoretical understanding sufficient

DIS experiments.

Influence of 1fb⁻¹ A⁻¹ LHeC ePb data on EPPS16

Improvement in EPPS16 nPDFs

[Probably understates full impact - still some Parameterisation bias in EPPS16 without future eA]

Summary

 Future DIS facilities are vital to fully establish and characterise saturation and the dynamics of its onset → the energy frontier of QCD

• Needs ep and eA inclusive, diffractive, semi-inclusive over a range of energies

- Complementarity beween EIC and LHeC
- LHeC working towards next CERN Council European Strategy exercise (2020) with a view to running in later stages of LHC (post-LS4, from ~2031) ... lots to do!

LHC P2

LHeC