

- → [Ultra-peripheral Vector Mesons]
- → Prospects for Central Exclusive Production

LHC: Exploring the ultra-rare at the Energy Frontier

But what 'usually' happens when hadrons collide at large \sqrt{s} ?

Understanding 10⁻¹ Processes is Hard!

"minimum bias" pp event in **PYTHIA8** at $\sqrt{s}=7$ TeV, visualised using MCViz

ПРАЗДНИКЪ ТЕ ЗДРАВСТВУЕТЬ СОЦІАЛИЗНІ

St Petersburg

Orientation: Processes

р

5

р

- This talk is concerned with cases where at least on proton stays intact (EL, SD, CD)

Why should we Care?

Minimum bias, elastic and diffractive processes intimately linked to our basic understanding of physics:

Fundamental questions:

- Confinement
- Hadronic mass generation,
- Non-perturbative v perturbative degrees of freedom
- Strong / weak coupling and super-gravity

Practical concerns:

- Modelling pile-up at the LHC
- Luminosity monitoring
- Modelling cosmic ray air showers

Methods for Diffraction and Elastics

... old slide from diffraction at HERA

Partially still true for LHC (but proton tagging technology, got better and rapidity gaps got harder to identify)

'Roman pot' vacuum-sealed insertions to beampipe, well downstream of IP.

Deployed in special (high β^* , low lumi) runs \rightarrow Most data shown here

First Generation LHC Proton Spectrometers (TOTEM & ATLAS-ALFA)

Second Generation LHC Proton Spectrometers (CT-PPS at CMS and AFP at ALFA)

AFP Detectors

Tracking:

4 slim-edge 3D pixel sensor planes per station (IBL)

- Pixel sizes 50x250 μm
- 14° tilt improves x (hence ξ) res'n $\rightarrow \delta x = 6 \mu m$, $\delta y = 30 \mu m$
 - Trigger capability

Timing:

4x4 quartz bars at Cerenkov angle to beam.

- Light detected via PMTs
- \rightarrow resolution 25ps demonstrated

Advantages of Roman Pot Technology

M. Trzebiński

AFP Detectors

[a nice illustration, from AFP, with thanks to Maciej Trzebinski]

4/21

Advantages of Roman Pot Technology

thin window and floor (300 μ m)

р

р

(ξ)

р

Described here in terms of kinematics of `Single Diffractive Dissociation' (SD)

 ξ = fractional proton energy loss t = -p_T² of outgoing proton

4/21

Acceptance Depends on Location and Orientation of Pot (horizontal or vertical) and on beam optics

e.g. complementarity between ATLAS ALFA and AFP

- ALFA is optimised for Elastic scattering
- AFP acceptance for Inelastic diffraction with ξ >~ 0.02 $_{\odot}$

Start `Simple': Elastic Scattering

At fixed \sqrt{s} , 1 non -trivial variable \rightarrow squared 4-momentum transfer, t

- Photon exchange contributes at lowest |t|
- Strongly interacting net-colour singlets at larger |t|
 ... still typically |t| << 1 GeV²
 → mostly non-perturbative
- With interference between the two

At fixed \sqrt{s} , 1 non -trivial variable \rightarrow squared 4-momentum transfer, t

Empirically, at fixed s in main `nuclear' region of study:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{\mathrm{d}\sigma}{\mathrm{d}t} \bigg|_{t=0} e^{Bt}$$

Slope parameter B measures mean impact parameter (i.e. size of interaction region, or range of strong force ~1-2fm).

Example Elastic Scattering Data

Precise t dependence over 'bulk' range of |t|at LHC

`Standard' exponential fit, excluding lowest |t| $\frac{d\sigma}{dt} = \frac{d\sigma}{dt}\Big|_{t}$ (influence of Coulomb, rather than hadronic, scattering) and largest |t| (various pQCD effects)

e.g. at √s=7 TeV ...

B=19.89±0.27 GeV⁻² (TOTEM) B=19.73±0.24 GeV⁻² (ALFA) e^{Bt}

17

Universal Exchange Picture of Elastic and Diffractive Scattering

s dependence of <u>elastic scattering</u> at fixed t: $\frac{d\sigma_{EL}}{dt} \propto \left(\frac{s}{s_0}\right)^2$

Pomeron trajectory:

р

$$\alpha(t) = \alpha(0) + \alpha't \approx 1.085 + 0.25t$$

... Leads to slope parameter growing logarithmically with energy

$$B = B_0 + 2\alpha' \ln\left(\frac{s}{s_0}\right) \qquad 18$$

Js dependence of t Slopes

- B increases with \sqrt{s} ... 'shrinkage' of forward elastic peak \rightarrow Increase of mean impact parameter / effective proton size as longer-lived fluctuations develop larger transverse size.

- At LHC, growth seems faster than expected simple logarithm \rightarrow Single pomeron exchange insufficient (absorptive corrections / different physics)

From Elastic to Total Cross Sections $\sigma_{TOT}^2 = \frac{16\pi(hc)}{c}$

Elastic amplitude closely related to total x-sec via optical theorem ...

e.g in Regge language, leads to $\sigma_{tot} \propto \left(\frac{s}{s}\right)^2$

Asymptotically (Froissart bound) limited to $\ln^2 s$ dependence

 $\rho \sim 0.14 = \text{Real} / \text{Imaginary part of hadronic amplitude at t=0}$

- Most recent / sophisticated treatment exploits Coulomb-Nuclear interference and fits to full t range and simultaneously 20extracts σ_{tot} and ρ ... see later

Total (& Elastic) Cross Section versus /s

Multiple TOTEM extractions at $\sqrt{s} = 13$ TeV \rightarrow 2.5% precision

Cosmic ray data extend to 50 TeV!

Broadly consistent with fits to low energy data (with either logarithmic or power law behaviour)

Total (& Elastic) Cross Section versus /s

First LHC Extraction of p Parameter

Interference between
Coulomb and Nuclear parts of elastic cross section is
sensitive to ρ parameter
Very high statistics TOTEM
sample at 13 TeV ...

 \rightarrow First LHC measurements of ρ

Interpretation as Evidence for Odderon

- No extrapolated pre-LHC model describes both ρ and σ_{tot} from 13 TeV TOTEM data (multiple models studied in `COMPETE' framework).

- Introducing a CP-odd contribution to the elastic exchange (i.e. an `odderon' - 3 gluon-based state) is one way of reconciling data - Slow-down of growth of σ_{tot} beyond LHC range (influencing ρ via dispersion relations) is another

р 00000 р

 \rightarrow Detailed studies are ongoing ...

24

Odderons and pp versus ppbar

- CP-odd 'odderon' exchange would contribute oppositely in pp (eg LHC) and ppbar (eg Tevatron) cases.
- LHC (TOTEM) elastic data at 2.76 TeV v Tevatron (D0)

- Evidence for difference in behaviour around the 'diffractive dip' ... if confirmed, 'smoking gun' for odderon ... 25

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Did TOTEM Discover the Odderon?

First determination of the ρ parameter at $\sqrt{s} = 13$ TeV – probing the existence of a colourless three-gluon bound state

The TOTEM Collaboration

Experiments at the Large Hadron Collider uncover possible evidence of elusive 'odderon' that physicists have sought after for decades

- Physicists have been looking for subatomic quasiparticle, 'odderon' since 1970s
- It involves collisions in which an odd number of gluons are exchanged
- While it hasn't been seen in earlier experiments, technology is now more precise

By CHEYENNE MACDONALD FOR DAILYMAIL.COM PUBLISHED: 00:46, 2 February 2018 | UPDATED: 00:46, 2 February 2018

of a quasiparticle they've been chasing for nearly 50 years.

ADVERTISEMENT

CERN COURIER

Mar 23, 2018

Oddball antics in proton-proton collisions

Figure

The TOTEM collaboration at CERN has uncovered possible evidence for a subatomic three-gluon compound called an odderon, first predicted in 1973. The result derives from precise measurements of the probability of proton-proton collisions at high energies, and has implications for our understanding of data produced by the LHC and future colliders.

105

Inelastic Diffraction

Single diffractive dissociation

One additional kinematic variable:

$$\xi = \frac{M_X^2}{s} = 1 - \frac{E_p'}{E_p}$$

- At LHC, M_X can be as large as 1 TeV in soft diffractive processes

- ξ strongly correlated with size of (pseudo)-rapidity gap between X and p ($\Delta \eta \sim \ln \xi$)

- 'Rapidity gap' method used in first LHC measurements

Rapidity Gap Cross Sections

- "Further significant progress will require proton tagging to unfold SD from DD and ND"

SD Cross Section with Tagged Protons

- Reconstruct scattered protons in ALFA, X system in inner tracker
 - ND and DD backgrounds negligible
 - New: 'overlay' background
 - ... uncorrelated ALFA, ID signals
 - Also signigificant `Central Diffraction' background

29

SD Cross Section v |t| and &

- Data consistent with expected exponential $\frac{d\sigma}{dt} = Ae^{Bt}$
- B = 7.60 ± 0.23(stat.) ± 0.22(syst.) GeV⁻²
- High precision, consistent with expectations:
- B(PYTHIA8 A2) = 7.82 GeV⁻², B(PYTHIA8 A3) = 7.10 GeV⁻²
- Expected approximate $d\sigma/d\xi \propto 1/\xi$ dependence holds over two orders of magnitude in ξ
- Further interpreted in `triple pomeron' model:

$$\frac{d\sigma_{SD}}{d\log_{10}(\xi)} \propto \left(\frac{1}{\xi}\right)^{\alpha(0)-1} \frac{1}{B} \left(e^{Bt_{\text{high}}} - e^{Bt_{\text{low}}}\right)$$

 $\alpha(0) = 1.07 \pm 0.02(\text{stat.}) \pm 0.06(\text{syst.}) \pm 0.06(\alpha')$... compatible with value describing elastic cross section \rightarrow universality

... compatible with models (PYTHIA8 A3: 1.14, PYTHIA8 A2 (SS): 1.00)

SD Cross Section versus LHC rapidity gap data and models

Comparison of ATLAS AFP data with closest available CMS data: rapidity gap measurement with strong veto on forward energy flow (CASTOR)

 \rightarrow Fair agreement, complementary ξ ranges

Available MC models substantially overestimate SD cross section in measured range

(PYTHIA8 A3 tune by 50%, other PYTHIA8 tunes and HERWIG by even more)

Scattered protor

<u>Diffraction at</u> the Parton Level

HERA ep Collider:

P

Virtual photon probes pomeron partonic structure rather like inclusive DIS ... >100 papers later 32

Hard Diffraction: Structure of Vacuum Exchange

Diffractive DIS at HERA → Diffractive parton densities (DPDFs) dominated by gluon, which extends to large momentum fractions

بریریری

g (z_⊮) Š

р

iet

jet

D

... NLO predictions based on HERA DPDFs give impressive description of all HERA 'hard' diffractive data, eg jet production ...

 \rightarrow DPDFs used in many models in pp

... but in pp(bar)

- Spectacular failure in comparison of Tevatron proton-tagged diffractive dijets with HERA DPDFs [PRL 84 (2000) 5043]
- ... rescattering (absorptive corrections / related to Multi Parton Interactions ...) breaks factorisation ...

`rapidity gap survival probability' ~ 0.1

- Gap survival probability needs to be understood to interpret all LHC hard diffraction data.
- Here: First results from LHC: ... dijets with large rapidity gaps ...

Diffractive Dijets (p_T>20 GeV) from ATLAS

jet

iet

- Kinematic suppression of large gaps \rightarrow no clear diffractive plateau (unlike minimum bias case) - ND models matched to small gap sizes give contributions compatible with data up to largest $\Delta \eta_F$ and smallest $\xi \dots$ no clear diff signal \dots

Evidence for Diffractive Contribution

Focusing on small ξ , whist simultaneously requiring large gap size ($\Delta \eta_F$ > 2) gives best sensitivity to diffractive component

 \rightarrow Models with no diffractive jets are below data by factor >~3

Comparison of smallest
 ξ with DPDF-based model
 (POMWIG) leads to rapidity
 gap survival probability
 estimate ...

- Model dependence not investigated in detail

 In context of POMWIG, using anti-k_T with R=0.6:

700 18 = 7 TeV. L = 6.8 nb⁻¹ ATLAS Anti-k, R = 0.6 dσ/d log ₁₀ξ Total exp. uncertainty 600 $\Delta n^F > 2$ WHEG ND + PYTHIA 8 500 PYTHIA 8 DD D-L POMWIG 400 300 Gap 200 Survival Factor 100 -26 22 -24

36

 $S^2 = 0.16 \pm 0.04$ (stat.) ± 0.08 (exp. syst.),

Similar CMS Analysis

Proton tagged data required for substantial further progress
→ removing complications from double dissociation and non-diffractive events with large gap fluctuations 37

New Generation of Roman Pots

Future LHC diffractive Physics based on CT-PPS (CMS/TOTEM) & AFP (ATLAS) - Operated in Run 2 and will

remain in Run 3 (and possibly be upgraded for HL-LHC)

Precision (fairly) radiation hard silicon pixel spatial detectors
 Time of Flight detectors with ~ 25ps timing precision from
 Cerenkov light in diamond (CT-PPS) and quartz (AFP)

 \rightarrow Operate in normal LHC runnning conditions

→ Optimised for double proton-tagged processes, where vertex can be located to ~1mm from proton ToF, suppressing pile-up

Newly Accessed Physics with Double Tags

- Inclusive central production

pomeron-pomeron hard scattering with jets, heavy flavour, W, Z signatures

$p \longrightarrow p$ $p \longrightarrow p$ $p \longrightarrow p$ $p \longrightarrow p$

- Central Exclusive QCD Production

of dijets, γ -jet and other strongly produced high mass systems ... Higgs?...

- <u>Two photon physics</u> → exclusive dileptons, dibosons & anomalous multiple gauge couplings, exclusive t-tbar?...

e.g. Strong Interactions v Photon-photon

... extensive programme of probing $\gamma\gamma$ vertex ... \rightarrow ZZ, WW, $\gamma\gamma$ final states ... \rightarrow Competitive sensitivity to anomalous quartic gauge cou - QCD production dominates at low central system masses

- QED production (light-by-light) takes over at larger central system masses

anomalous quartic gauge couplings in large mass region

- Total of 110 fb⁻¹ accumulated by CT-PPS, 81 fb⁻¹ by AFP.

 \rightarrow Transformational lumi compared with previous Roman potS

- \rightarrow Commissioning and data understanding ongoing
- \rightarrow First results obtained (with single tags so far)

AFP Observation of Single Diffractive Dijet Signal

- Single proton tagged sample with ξ measured in main ATLAS calorimeter

Strong enhancement in low ξ_{Cal}
 diffractive region for AFP triggered data over MBTS data
 + common pile-up contribution

Low ξ data exhibit expected x-y correlation in AFP pixels and correlation between pixel x position and ξ_{Cal}

 \rightarrow Clear diffractive signature

First High Lumi Study @ CT-PPS (9.4 fb⁻¹)

 $\gamma\gamma \rightarrow ee \text{ or } \mu\mu$

- Single proton tagged (so far)
- Dileptons required to be back to back
- Study correlation between ξ from proton and from l^+l^- pair $^{\dots}$

12 $\mu\mu$ events match in ξ (1.5±0.5 background) 8 ee events match in ξ (2.4±0.5 background)

Kinematics of Candidate Events

- 2 electron events were in double tag acceptance, but only one proton seen due to inefficiencies

- Highest mass events: m(ee) = 917 GeV and $m(\mu\mu) = 342 \text{ GeV}$

Roman pots at HL-LHC?

First studies with HL-LHC beam optics ... Acceptances for 2x2cm detector @ 15 σ +0.5mm, no collimators

233m: Reduced ξ acceptance relative to that now in AFP region

324,420m: Attractive ξ acceptance extending into SM Higgs region and very wide t range at possible deployment points in cold sections

Summary

Precise elastic & total cross section data

- Surprises in energy dependences
- Multi-exchanges / absorption play a role
- Evidence for odderon under discussion

Diffractive dissociation data

- Rapidity gap method reached its limits
- First LHC data with proton tags
- Soft pomeron with intercept as expected works well
- Rapidity gap survival probability larger than expected?

Undergoing revolution based on high lumi Roman pots

- First results from single tagged samples and <10% of run2 lumi
- Uncharted QCD territory in exclusive central production
- Rare / exotic EW physics and searches with tagged protons

