Low x & Diffractive Physics at the LHeC

Paul Newman Birmingham University

LHeC Workshop Chavannes-de-Bogis 20 January 2014

Conceptual Design Report (July 2012)

[arXiv:1206.2913]

Substantial low x chapter (81 pages, 34 authors)

See also talks by Nestor and Hannu

Physics at High Parton Densities 1024.1 4.1.2 4.1.3 4.1.4 4.24.2.14.2.2 4.2.34.2.44.2.5Jet and multi-jet observables, parton dynamics and fragmentation . . 167 4.2.6Implications for ultra-high energy neutrino interactions and detection 179

Journal of Physics G

Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN
Report on the Physics and Design Concepts for
Machine and Detector

A fundamental problem is looming in QCD ... rise of low x partons ... High energy unitarity issues reminiscent of longitudinal WW scattering in electroweak physics

... new high density, small coupling parton regime of non-linear parton evolution dynamics (e.g. Colour Glass Condensate)? ... gluon dynamics \rightarrow confinement and hadronic mass generation

Filling up the Proton

Lines of constant 'blackness' ~diagonal in kinemaic plane ...

Scattering cross section appears constant along them

(`Geometric Scaling')

Limited previous evidence in ep and eA restricted to small $Q^2 < \sim 1 \text{ GeV}^2$.

→ Partonic interpretation precluded

Usual to implement via 'dipole models', with saturation built into dipole-proton x-section.

LHeC: Accessing saturation region at large Q²

LHeC delivers a 2-pronged approach:

Enhance target 'blackness' by:

- 1) Probing lower x at fixed Q² in ep [evolution of a single source]
- 2) Increasing target matter in eA

[fixed Q]

DENSE
REGION

DILUTE
REGION

In A

[overlapping many sources at fixed kinematics ... Density $\sim A^{1/3} \sim 6$ for Pb ... worth 2 orders of magnitude in x]

... Reaches saturated region in both ep & eA inclusive data according to models

Low x Acceptance Requirements

Access to $Q^2=1$ GeV² in ep mode for all $x > 5 \times 10^{-7}$ requires scattered electron acceptance to 179°

Small angle forward acceptance similarly important for hadronic final state studies - e.g. forward (Mueller-Navalet) jets.

LHeC Sensitivity to Different Saturation Models

With 1 fb⁻¹ (1 month at 10^{33} cm⁻² s⁻¹), F_2 stat. < 0.1%, syst, 1-3% F_L measurement to 8% with 1 year of varying E_e or E_p

 F_2 and F_L pseudodata at $Q^2 = 10 \text{ GeV}^2$

- LHeC can distinguish between different QCD-based models for the onset of non-linear dynamics
 - ... but can satⁿ effects hide in standard fit parameterisations?

Establishing Saturation in Inclusive Data

(Lack of) quality of NNPDF fit to F_2 and F_L pseudodata with saturation effects included ...

• Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 \vee F_L$ in ep or F_2 in ep \vee eA

Exclusive / Diffractive Channels and Saturation

- 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon
- 2) Additional variable t gives access to impact parameter (b) dependent amplitudes
 - → Large t (small b) probes densest packed part of proton?

 $X(M_x)$

e.g. Elastic J/\P Photoproduction

- `Cleanly' interpreted as hard 2g exchange coupling to qqbar dipole (see HERA data via MNRT and others)
- c and c-bar share energy equally, simplifying VM wavefunction

Clean experimental signature (just 2 leptons)

... LHeC reach extends to:
$$x_g \sim (Q^2 + M_V^2) / (Q^2 + W^2) \sim 5.10^{-6}$$

 $\overline{Q^2} = (Q^2 + M_V^2) / 4 \sim 3 \text{ GeV}^2$

- Simulations of elastic $J/\Psi \rightarrow \mu\mu$ photoproduction
- → scattered electron untagged, 1° acceptance for muons (similar method to H1 and ZEUS)

J/Ψ Kinematics

- At fixed $\int s$, decay muon direction is determined by W = $\int s_{yp}$
- To access highest W, acceptance in outgoing electron beam direction crucial

Comparison with Dipole model Predictions

e.g. "b-Sat" Dipole model

- "eikonalised": with impact-parameter dependent saturation
- "1 Pomeron": non-saturating

• Significant non-linear effects expected in LHeC kinematic range.

With detailed exploration of ep and eA, including t dependences, this becomes a powerful probe!...

Signals in t Dependences: e.g. J/ψ Photoproduction

t dependences measure Fourier transform of impact parameter distribution. → Unusual features can arise from deviations from Gaussian matter distribution e.g. Characteristic dips in model by Rezaeian et al, (just) within LHeC sensitive t range.

Exclusive Diffraction in eA

Experimental separation of incoherent diffraction based mainly on ZDC

Deeply Virtual Compton Scattering

- No VM wavefunction complications
- Exceptionally sensitive to spatial distributions and correlations of partons in proton → Nucleon Tomography

Huge LHeC kinematic range → W~1TeV, Q²~1000 GeV²

Resulting impact on GPDs etc still to be evaluated

Complementarity of rapidity gap and Roman pot techniques \rightarrow Full acceptance for $x_{IP} < \sim 0.05$

- Low $x_{IP} \rightarrow$ cleanly separate diffraction
- Low β \rightarrow Novel low x DPDF effects /non-linear dynamics?
- High $Q^2 \rightarrow$ Lever-arm for gluon, Flavour separation via EW

New Region of Large Diffractive Masses

Large x_{IP} region highly correlated with large Mx

- 'Proper' QCD (e.g. large E_T) with jets and charm accessible
- New diffractive channels ... beauty, W / Z bosons
- Unfold quantum numbers / precisely measure new 1- states

Quick Flash of Selected Stuff I didn't cover ...

Azimuthal decorelations / TMD parton densities

+ Diffractive charged currents (next talk by Marketa)

Summary

- Low x physics is the Strong Interaction energy frontier: lots to be discovered:
 - Dense partonic systems → correlations / interactions
 - Understanding onset of non-linear dynamics
 - Towards the Gribov black-disk limit
 - → Confimement, Hadronic mass generation??
- LHeC has unique sensitivity -> full potential far from evaluated
- Next step 1) Realistic estimates of systematics
 - MC modelling, in particular of forward region in eA / ep
- Detailed design / simulation of dedicated detectors (small angle electrons, beamline protons and neutrons, forward HCAL, forward and backward muons)
- Next step 2) Evaluate sensitivity to underlying physics
 - GPDs, TMDs / unintegrated gluons, DPDFs ...