

(*) Current Baseline Linac-Ring Version

LHeC Context

Lepton-hadron
scattering at the TeV
centre of mass scale
(60 GeV electrons x
LHC protons & ions)

- High luminosity: 10³³ - 10³⁴ cm⁻² s⁻¹

- Runs simultaneous with ATLAS / CMS in post-LS3 HL-LHC period

Physics Overview

Varied physics goals require precise measurements throughout kinematically accessible region.

Also need 1° acceptance in outgoing proton direction to contain multi-TeV jets at high x (essential for kinematic reconstruction; electron-only method breaks down)

10 -3

10 -2

 10^{-1}

Kinematic Requirements in Specific Channels

Requirements on Precision and Efficiency

Scattered Electron

- Good p_T and θ tracking resolution over maximum possible range (electron charge / angle)
- Minimal EM calorimeter scale uncertainty
- Excellent e/h separation at low energies
- Efficient tracking (e/γ separation)

Hadrons

- Primary vtx / p_T resolution (charged particles)
- Secondary vertex resolution (c, b quark ID)
- Excellent jet resolution & HAD calorimeter scale uncertainty (e.g. H→bbbar)
- Hermetic for missing $E_{\scriptscriptstyle T}$ / CC identification
- Precise muons (searches, HF, vector mesons)

Beam-line

- Forward protons (diffraction / low x)
 - Forward neutrons (heavy ions ...)
 - Backward photons (luminosity)
 - Backward electrons (luminosity, photoproduction)

Detector Design Overview

- Forward / backward asymmetry reflecting beam energies
- Present size 14m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
- Beamline instrumentation (not shown) integral to design

Interaction Region & Beam-pipe

• Dipole magnets required throughout detector region to bend electrons into head-on collisions

 Resulting synchrotron fan has implications for

- Beampipe (6m long, elliptical, 3mm Be wall)
- Silicon detector layout

Superconducting
3.5T solenoid
(NbTi / Cu in 4.6K
Liquid Helium cryo)

- Iron in HAC provides field return path
- -Dual dipoles (0.15 0.3 T, covering |z| < 14m). Inner (cold) section integrated with solenoid, outer iron section warm.

Field components of solenoid (Bz) and dipoles (By) at beam axis in interaction region

Tracking Region

- Full angular coverage, long tracking region \rightarrow 1° acceptance
- Forward direction most demanding (dense, high energy jets)
- Pixels (CPT) + Strips; several technologies under discussion

Tracking Simulation

Performance evaluated from basic layout (LicToy 2.0 program)

- Central tracks:

Excellent track resolution: $\Delta p_t/p_t^2 \rightarrow 6 \ 10^{-4} \text{ GeV}^{-1}$ Excellent impact parameter resolution: $\rightarrow 10 \mu \text{m}$

- Forward / Backward tracks:

Degrades for $\theta < 5^{\circ}$, but still useful! At 1°, bending field component = 0.36 T (similar to dipole)

Calorimeters Overview

Current design based on (experience with) ATLAS (and H1), re-using existing technologies

- Liquid Argon EM calorimeter, possibly with accordion geometry (inside coil)
- Scintilating Tile HAD calorimeter (outside coil)
- Forward and Backward End-Cap Modules

Barrel EM Calorimeter

- -2.3 < η < 2.8
- Accordion geometry baseline design
- 2.2mm lead + 3.8mm LAr layers
- Total depth ~ 20 X_0
- Geant4 simulation of response to electrons at Normal Incidence

[cf ATLAS: 10%/JE + 0.35%]

[ATLAS]

 $\eta = 0$

1.7X₀ Δq=0.0245 36.8mmx4 =147 9

4.3Xo

37.5mm/8 ≈ 4.69 mm

 $\Delta \eta \simeq 0.0031$

16X₂

Towers in Sampling 3 = 0.0245 0.05

 $\Delta \eta = 0.025$

Strip towers in Sampling

Trigger Tower $\Delta n = 0.1$

÷ 0.0982

Square towers in Sampling 2

Barrel HAD Calorimeter

- Tile Sampling Calorimeter: 4mm steel, 3mm scintillator layers
- Total depth ~ 7-9 interaction lengths

- Geant4 simulation of combined Lar + Tile response to charged pions at normal incidence

-14cm `Al' layer to simulate intermediate solenoid and cryo

[cf ATLAS: 30%/√E + 9%]

Forward & Backward Calorimeters

- Highest energies and multiplicities in forward direction.
 Radiation fluence also becomes an issue (but << LHC GPDs)
- Precision required in backward direction (scattered electron)
- Fwd: Tungsten (short X_0) + silicon strips (EM) or pads (HAD) EM ~ 30 X0, HAD ~ 9 λ
- Bwd: Lead + Si strips for EM (~ 25X0)

Copper + Si pads for HAD (~ 7 λ)

Calorimeter Module (Composition)	Parameterized Energy Resolution
Electromagnetic Response	
$FEC_{(W-Si)}$	$\frac{\sigma_E}{E} = \frac{(14.0 \pm 0.16)\%}{\sqrt{E}} \oplus (5.3 \pm 0.049)\%$
$BEC_{(\mathbf{Pb}-\mathbf{Si})}$	$\frac{\sigma_E}{E} = \frac{(11.4 \pm 0.5)\%}{\sqrt{E}} \oplus (6.3 \pm 0.1)\%$
Hadronic Response	
$\operatorname{FEC}_{(\mathbf{W}-\mathbf{Si})} \& \operatorname{FHC}_{(\mathbf{W}-\mathbf{Si})}$	$\frac{\sigma_E}{E} = \frac{(45.4 \pm 1.7)\%}{\sqrt{E}} \oplus (4.8 \pm 0.086)\%$
$\mathrm{FEC}_{(\mathbf{W}-\mathbf{Si})} \And \mathrm{FHC}_{(\mathbf{Cu}-\mathbf{Si})}$	$\frac{\sigma_E}{E} = \frac{(46.0 \pm 1.7)\%}{\sqrt{E}} \oplus 6.1 \pm 0.073)\%$
$\operatorname{BEC}_{(\mathbf{Pb}-\mathbf{Si})} \& \operatorname{BHC}_{(\mathbf{Cu}-\mathbf{Si})}$	$\frac{\sigma_E}{E} = \frac{(21.6 \pm 1.9)\%}{\sqrt{E}} \oplus (9.7 \pm 0.4)\%$

Muon System

Baseline: Provides tagging, but not momentum measurement

- : Angular coverage \rightarrow 1° vital eg for elastic J/ Ψ
- : Technologies used in LHC GPDs and their upgrades (more than) adequate

[Drift tubes / Cathode strip chambers \rightarrow precision Resistive plate / Thin Gap chambers \rightarrow trigger + 2nd coord]

Beamline Instrumentation

- The beam-line at HERA hosted multiple detectors over a ~300m region
- LHeC beamline should be at least as heavily instrumented over an even wider region (-120m < z < 420m).
- The requirements of these detectors has to be bourne in mind from outset

Luminosity / Photon Tagging

- Can measure luminosity (as at HERA) by tagging outgoing photons in Bethe-Heitler ep \rightarrow ep γ events

- With zero crossing angle, photons travel along beamline and might be detected at z = -120 m after D1 proton bending dipole.

With sufficient
apperture through
Q1-Q3 magnets,
95% geometrical
acceptance
possible

 $\rightarrow \delta L \sim 1\%$

Low Angle Electron Tagging

- Reinforce luminosity measurement
- Tag γp for measurements and as background to DIS

W (GeV)

Leading Neutrons

- Crucial in eA, to determine whether nucleus remains intact e.g. to distinguish coherent from incoherent diffraction

- Crucial in ed, to distinguish scattering from p or n
- Forward $\boldsymbol{\gamma}$ and n cross sections relevant to cosmic ray physics

- Has previously been used in ep to study π structure function

Possible space at z ~ 100m (also possibly for proton calorimeter)

... to be further investigated

Leading Protons / Diffraction

Exciting extensions to HERA diffractive kinematic range if events can be selected.

- η_{max} cut around 3 (as at HERA) selects events with $x_{IP} < 10^{-3}$

- To see higher x_{IP} (including compelling programme at high Mx), need to tag and measure protons in dedicated beamline spectrometers.

 $\log_{10}(x_{IP})$

Forward Proton Spectrometer

With `FP420'-style proton spectrometer approaching beam to 12σ (~250 µm), can tag and measure elastically scattered protons with high acceptance over a wide x_{IP}, t range

Complementary acceptance to Large Rapidity Gap method

Together cover full range of interest with some redundancy

Future Circular Collider ep Detector: first ideas for 50 TeV p x 100 TeV e

(to be further developed by our children)

FCC-he Detector (B) - 0.1

Crab cavities for p instead of dipole magnet for e bend to ensure head on collisions 1000 H $\rightarrow \mu\mu$ may call for better muon momentum measurement H \rightarrow HH \rightarrow 4b (and large/low x) call for large acceptance and optimum hadr. E resolution Detector for FCC scales by about ln(50/7) ~2 in fwd, and ~1.3 in bwd direction Full simulation of LHeC and FCC-he detectors vital for H and H-HH analysis

P.Kostka et al.

Summary

- Possible LHeC detector solutions evaluated in some detail

- Physics & environment requirements demanding, but much less so than LHC GPDs (except maybe fwd tracking)
- Ideas shown here are based on existing technologies and do not require significant R&D
- Any / all of this can change in response to machine design development, physics demands or new good ideas!

- Next step: full detector simulation under development using DD4HEP tool-kit \rightarrow reassess physics performance and feed back to detector design \rightarrow towards a Technical Design Report

LHeC