

... lepton-hadron scattering at the TeV scale ...

Paul Newman Birmingham University

DIS 2016 DESY Hamburg 12 April 2016

Other LHeC Talks at DIS'16 (all Tues 12/4)

Olaf Behnke:

Higgs and Top Physics at LHeC

- Claire Gwenlan: Low x Physics at LHeC
- Mandy Cooper-Sarkar: PDFs at LHeC

Ilkka Helennius: eA Physics at LHeC

Other Useful Sources

- LHeC Chavannes Workshop (June 2015)
- LHeC web: http://lhec.web.cern.ch

LHeC Context

LHeC: 60 GeV electrons x LHC protons & ions → 10³⁴ cm⁻² s⁻¹ → Simultaneous running with ATLAS / CMS sometime in HL-LHC period

FCC-ep: 60 GeV electrons x 50 TeV protons from FCC (now @Roma)

Natural next-step energy frontier ep / eA physics \rightarrow TeV scale physics at 10³⁴ cm⁻²s⁻¹

Baseline[#] Design (Electron "Linac") LHeC CDR, July 2012 [arXiv:1206.2913]

Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures

- ep lumi \rightarrow 10³⁴ cm⁻² s⁻¹ -
- \rightarrow ~100 fb⁻¹ per year \rightarrow ~1 ab⁻¹ total
- eD and eA collisions have always been integral to programme
- e-nucleon Lumi estimates ~ 10^{31} (3.10³²) cm⁻² s⁻¹ for eD (ePb)

[#] Alternative designs based on electron ring and on higher energy, lower luminosity, linac also exist

Machine Parameters

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [µm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ [*] _{x,y} [μm]	4	4
rms Beam divergence σ΄ _{x,y} [μrad]	80	40
Beam Current [mA]	1112	25
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64

When?

... Not defined ... but note LHC schedule extends to ~2035, with further shutdowns beyond LS3 / HL-LHC upgrade ... Major part of LHeC physics programme (complementing and enhancing LHC) only makes sense if LHC & LHeC run in parallel

Where?

Default is 1/3 at Point 2 (currently ALICE) \rightarrow 60 GeV electrons

е w u w d - Substantial Higgs programme

- Revolutionary p PDF (& α_s) precision improves LHC sensitivity to Higgs and new physics

- Elucidates low x dynamics in ep & eA

4 orders of mag. in
 kinematic range of
 nuclear structure

... and What If?...

If a new scalar X(750) $\rightarrow \gamma\gamma$ is confirmed at LHC, it is kinematically accessible at LHeC (with $\sqrt{s} \sim 1.3$ TeV)

- Background estimate in γp mode \rightarrow ~ 0.01 fb
- VBF would be similar to Higgs analysis (Olaf's talk)
 ... complementary to LHC; no possibility of production via gluon fusion in ep

- Dual dipole magnets (0.15 0.3 T) throughout detector region (|z| < 14m) bend electrons into head-on collisions
- Eliptical beampipe (6m x 3mm Be) accommodates synchrotron fan
- 3.5 T Superconducting NbTi/Cu Solenoid in 4.6K liquid helium cryo.

Interaction Region & Magnets

Detector Design Overview

- Present size 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
- 1° tracking acceptance in both forward & backward directions
- Forward & backward beam-line instrumentation integrated

Tracking Region

- Long tracking region \rightarrow 1° electron hits 2 tracker planes
- Forward direction most demanding (dense, high energy jets)
- Pixels (CPT) + Strips; several technologies under discussion

Tracking Simulation

Performance evaluated from basic layout (LicToy 2.0 program)

- Central tracks:

Excellent track resolution: $\Delta p_t/p_t^2 \rightarrow 6 \ 10^{-4} \text{ GeV}^{-1}$ Excellent impact parameter resolution: $\rightarrow 10 \mu \text{m}$

- Forward / Backward tracks:

Degrades for $\theta < 5^{\circ}$, but still useful! At 1°, bending field component = 0.36 T (similar to dipole)

Barrel EM Calorimeter

- -2.3 < η < 2.8
- Accordion geometry baseline design
- 2.2mm lead + 3.8mm LAr layers
- Total depth ~ 20 X_0
- Geant4 simulation of response to electrons at Normal Incidence

[cf ATLAS: 10%/JE + 0.35%]

[ATLAS]

 $\eta = 0$

1.7X₀ Δq=0.0245 36.8mmx4 =147 9

4.3Xo

37.5mm/8 ≈ 4.69 mm

 $\Delta \eta \simeq 0.0031$

16X₂

Towers in Sampling 3 = 0.0245 0.05

 $\Delta \eta = 0.025$

Strip towers in Sampling

Trigger Tower $\Delta n = 0.1$

÷ 0.0982

Square towers in Sampling 2

Overview of Calorimeters

- Forward end-cap silicon + tungsten, to cope with highest energies & multiplicities, radiation tolerant EM \rightarrow 30X₀, Had \rightarrow 9 λ

- Backward end-cap Pb+Si for EM (25 X_0) Cu+Si for HAD (7 λ)

Muon System

Baseline: Provides tagging, but not momentum measurement

- : Angular coverage \rightarrow 1° vital eg for elastic J/ Ψ
- : Technologies used in LHC GPDs and their upgrades (more than) adequate

[Drift tubes / Cathode strip chambers \rightarrow precision Resistive plate / Thin Gap chambers \rightarrow trigger + 2nd coord]

Beamline Instrumentation

Luminosity / Photon Tagging

Low Angle Electron Tagging

- Reinforce luminosity measurement
- Tag γp for measurements and as background to DIS

W (GeV)

Leading Neutrons and Protons

- Possible space for neutron calorimeter at z ~ 100m

- "FP420 style" forward proton spectrometer gives very high acceptance [12σ (~250 µm) approach to beam assumed]

Proposed ERL Prototype (PERLE)

- Test centre for accelerator development, LHeC prototype
- 2 x 150 MeV linacs, 3 passes \rightarrow 900 MeV at high current
- Significant standalone physics potential (10⁴⁰ cm⁻² s⁻¹ fixed target) ... EW parameters, proton radius, photonuclear physics,

- 4 cryo modules, each housing 4 x 802 MHz 5-cell RF cavities giving ~20MV.

- ... under development (Jlab / CERN)
- Adaptation of JLab SNS high $\beta\,$ cryo module

ERL Demonstrator

Reduced specification ERL prototype with two or even one cryo module, using the same 802MHz cavities

 \rightarrow E_e = 400 (200) MeV

 \rightarrow Lacks standalone physics programme

→ Sufficient for proof of principle of multi (3)-turn ERL with high (~10mA) current.

More Distant Future: FCC-he

Ongoing work based on similar electron ERL to LHeC, with 50 TeV protons

A Baseline for the FCC-he

Oliver Brüning¹ Max Klein^{1,2}, Daniel Schulte¹, Frank Zimmermann¹ ¹ CERN, ² University of Liverpool March 3rd, 2016

Table 1: Baseline parameters of future electron-proton collider configurations based on the ERL electron linac.

parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
$E_p \; [\text{TeV}]$	7	7	15	50
$\overline{E_e}$ [GeV]	60	60	60	60
$\sqrt{s} [\text{TeV}]$	1.3	1.3	1.9	3.5
bunch spacing [ns]	25	25	25	25
protons per bunch $[10^{11}]$	1.7	2.2	2.2	1
$\epsilon_p \; [\mu \mathrm{m}]$	3.7	2	2	2.2
electrons per bunch $[10^9]$	1	2.3	2.3	2.3
electron current [mA]	6.4	15	15	15
IP beta function β_p^* [cm]	10	7	10	15
hourglass factor	0.9	0.9	0.9	0.9
pinch factor	1.3	1.3	1.3	1.3
luminosity $[10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.3	10.1	15.1	9.2

[Work in progress \rightarrow 10³⁵ cm⁻² s⁻¹ ep at \sqrt{s} = 3.5 TeV, also eA]

Detector for ep at a Future Circular Collider

- Similar IR to LHeC

-Detector scaled by up to ln(50/7)~ 2

- Double solenoid + Dipole

- Even longer tracking **Region than LHeC**

Organisational Structure

Guido Altarelli (Rome)+ Sergio Bertolucci (CERN) Nichola Bianchi (Frascati) Frederick Bordry (CERN) Stan Brodsky (SLAC) Hesheng Chen (IHEP Beijing) Andrew Hutton (Jefferson Lab) Young-Kee Kim (Chicago) Victor A Matveev (JINR Dubna) Shin-Ichi Kurokawa (Tsukuba) Leandro Nisati (Rome) Leonid Rivkin (Lausanne) Herwig Schopper (CERN) – Chair Jurgen Schukraft (CERN) Achille Stocchi (LAL Orsay) John Womersley (STFC)

International Advisory Committee

Mandate to the International Advisory Committee

Advice to the LHeC Coordination Group and the CERN directorate by following the development of options of an ep/eA collider at the LHC and at FCC, especially with:

Provision of scientific and technical direction for the physics potential of the ep/eA collider, both at LHC and at FCC, as a function of the machine parameters and of a realistic detector design, as well as for the design and possible approval of an ERL test facility at CERN.

Assistance in building the international case for the accelerator and detector developments as well as guidance to the resource, infrastructure and science policy aspects of the ep/eA collider. Chair: Herwig Schopper

	Gianluigi Arduini Nestor Armesto	Physics Working Groups / Convenors	
Coordination Group	Oliver Brüning Stefano Forte Andrea Gaddi Erk Jensen Max Klein Peter Kostka Bruce Mellado Paul Newman	PDFs, QCD Higgs BSM Top Nuclei Small x	Fred Olness, Voica Radescu Uta Klein, Masahiro Khuze Georges Azuelos, Monica D'Onofrio Olaf Behnke, Christian Schwanenberger Nestor Armesto Paul Newman, Anna Stasto
Daniel Schulte Frank Zimmermann			25

LHeC Summary

- CDR 2012
- Recently presented to ECFA, on NuPECC (long-term) roadmap
- Renewed interest following ...
 - 1) Possibility of 10³⁴ cm⁻² s⁻¹ luminosity
 - 2) Higgs discovery, searches and new measurements at LHC \rightarrow PDFs & QCD limit HL-LHC.
 - 3) Technical interest (high gradient cavities, ER linacs)

LHC P2

LHeC

4) Longer term perspective of FCC

- Next goals ...

- 1) Development of 802 MHz SC RF \rightarrow ERL prototype design
- 2) Update CDR (physics, technical) for 2018 Euro Strategy
- 3) Further development of FCC concept and physics