# Diffraction at the LHeC and the EIC

#### Paul Newman Birmingham University





DIS 2017 Birmingham, UK 6 April 2017

... with thanks to Rik Yoshida and Thomas Ullrich



- Motivation
- Diffractive signatures
- EIC
- LHeC
- FCC-eh

# Diffactive Physics Motivation (from planned EIC National Academy Talk, April 2017)

#### Diffraction for the 21st Century

#### Diffraction is the most precise probe of non-linear dynamics in QCD

- Diffraction in QCD is far more powerful than in optics or low energy electron scattering. In QCD at high energies, the virtual photon probe itself is a complex superposition of quark, antiquark and gluon states that interact with differing strengths off strong color fields in the target.
- Fluctuations in the composition of the probe enable unprecedented spatial maps of color fluctuations in the target.
- At an EIC, diffractive measurements of hadron final states (with invariant masses M<sub>χ</sub> >> Λ<sub>QCD</sub>, the QCD scale) provide unique tools to probe the structure of the QCD vacuum over varying length scales.



An inelastic (large M<sub>X</sub>) diffractive event: Illustrates color neutral exchange between the virtual photon and the hadron with no activity between scattered hadron and M<sub>X</sub>

#### **Exclusive / Diffractive Channels and Saturation**

- 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon
- 2) Additional variable t gives access to impact parameter (b) dependent amplitudes
  - → Large t (small b) probes densest packed part of proton?



 $X(M_x)$ 

# LHeC Intact Proton Selection Methods follow HERA

1) Measure scattered Proton in Roman Pots



- Allows t measurement, but limited by stats, p- tagging systs
- 2) Select Large Rapidity Gaps
  - -Limited by control over proton dissociation contribution



- Methods have very different systematics → complementary
- In practice, method 2 yielded lasting results, because of statistical and kinematic range limitations of Roman pots
- Roman pots mainly contrained t distributions
- Different at LHeC & EIC → higher lumi + pot design from outset

## Rapidity Gap Selection





- $-\eta_{max}$  v  $\xi$  correlation entirely determined by proton beam energy
- Cut around  $\eta_{max}$  ~ 3 selects events with  $x_{IP}$  <~  $10^{-3}$  at LHeC (cf  $x_{IP}$  <~  $10^{-2}$  at HERA

 $\log_{10}(x_{IP})$ 

Forward Proton
Spectrometer



- Proton spectrometer uses outcomes of FP420 project (proposal for low \(\xi\) Roman pots at ATLAS / CMS - not yet adopted)

- Approaching beam to  $12\sigma$  (~250  $\mu$ m) tags elastically scattered protons with high acceptance over a wide  $x_{IP}$ , t range

Complementary acceptance to Large Rapidity Gap method

Together cover full range of interest with some redundancy



### **EIC Forward Proton Spectrometer**

- Beamline instrumentation intrinsic to design from outset
- Many possible access points:

4m, 18m, 38m at eRHIC 12m - 45m at JLEIC



## **EIC Forward Proton Spectrometer**

#### Full Acceptance for Forward Physics!

Example: acceptance for p' in e + p  $\rightarrow$  e' + p' + X



These detectors came of age at LHC: we should be ambitious



# Day 1 Measurement: σ<sub>diffractive</sub>/σ<sub>total</sub>



- HERA observed: ~14% of all events are diffractive
- Saturation models (CGC)
   predict up to σ<sub>diff</sub>/σ<sub>tot</sub> ~ 25%
   in eA
- Ratio enhanced for small M<sub>X</sub> and suppressed for large M<sub>X</sub>
- Standard QCD predicts no M<sub>X</sub> dependence and a moderate suppression due to shadowing.



Unambiguous signature for reaching the saturation limit

# Spin-dependent 2+1D coordinate space images from diffractive J/ψ production in ep







#### Imaging of Nuclei

- 1950-60: Measurement of charge (proton) distribution in nuclei
- Ongoing: Measurement of neutron distribution in nuclei
- EIC: Measurement of spatial gluon distribution in nuclei via  $d\sigma/dt$  where  $t = (\mathbf{p}_{out} \mathbf{p}_{in})^2$  of nucleus (t conjugate to  $b_T$ )



- Other than in ep in eA, measuring the scattered A' is impossible for heavy nuclei (stays in beam pipe)
- Exclusive vector meson production and DVCS are the *only* processes where *t* can be extracted: e+A → e'+A'+VM
- J/ψ is key since it is the least affected by saturation effects and reflects the source best

Probing Q<sup>2</sup> dependence of gluon saturation in diffractive p and  $\phi$  meson production





#### Test Case: Elastic J/Ψ Photoproduction

- `Cleanly' interpreted as hard 2g exchange coupling to qqbar dipole (see HERA/LHC UPC data via MNRT etc)
- c and c-bar share energy equally, simplifying VM wavefunction



Clean experimental signature (just 2 leptons)

... LHeC reach extends to: 
$$x_g \sim (Q^2 + M_V^2) / (Q^2 + W^2) \sim 5.10^{-6}$$
  
 $\overline{Q^2} = (Q^2 + M_V^2) / 4 \sim 3 \text{ GeV}^2$ 

- Simulations (DIFFVM) of elastic  $J/\Psi \rightarrow \mu\mu$  photoproduction
- → scattered electron untagged, 1° acceptance for muons (similar method to H1 and ZEUS)

#### **J/W** Kinematics

- At fixed  $\int s$ , decay muon direction is determined by W =  $\int s_{\gamma p}$
- To access highest W, acceptance in outgoing electron beam direction crucial







### Comparison with Dipole model Predictions

e.g. "b-Sat" Dipole model

- "eikonalised": with impact-parameter dependent saturation
- "1 Pomeron": non-saturating





• Significant non-linear effects expected in LHeC kinematic range.

With detailed exploration of ep and eA, including t dependences, this becomes a powerful probe!...

## t Dependence of Elastic J/ψ Photoproduction



- J/ $\psi$  photoproduction double differentially in W and t ...
- Precise t measurement from decay  $\mu$  tracks over wide W range extends to  $|t| \sim 2 \ GeV^2$  and enhances sensitivity to saturation effects
- Measurements also possible in multiple Q<sup>2</sup> bins

#### **Exclusive Diffraction in eA**







Experimental separation of incoherent diffraction based mainly on ZDC

#### **Deeply Virtual Compton Scattering**

- No vector meson wavefunction complications
- Cross sections suppressed by photon coupling
  - → limited precision at HERA
  - → would benefit most from high lumi of LHeC and EIC



LHeC Simulations based on FFS model in MILOU generator

- $\rightarrow$  Double differential distributions in (x, Q<sup>2</sup>) with 1° and 10° cuts for scattered electron
- $\rightarrow$ Kinematic range determined largely by cut on  $p_T^{\gamma}$  (relies on ECAL performance / linearity at low energies)

### DVCS with low luminosity & high acceptance

1 fb<sup>-1</sup>,  $E_e = 50$  GeV, 1° acceptance,  $p_T^{\gamma} > 2$  GeV



- Precise double differential data in low Q<sup>2</sup> region
- Statistical precision deteriorates for Q<sup>2</sup> >~ 25 GeV<sup>2</sup>
- W acceptance to ~ 1 TeV (five times HERA)

#### DVCS with high luminosity and low acceptance

100 fb<sup>-1</sup>,  $E_e = 50$  GeV,  $10^\circ$  acceptance,  $p_T^\gamma > 5$  GeV



- High lumi gives precision data to Q<sup>2</sup> of several hundred GeV<sup>2</sup>
  - → Completely unprecedented region for DVCS / GPDs

# Inclusive Diffraction / Diffractive



#### PDFs at LHeC



Diffractive Kinematics at x<sub>ID</sub>=0.01



- Low  $x_{IP} \rightarrow$  cleanly separate diffraction
- Low  $\beta$   $\rightarrow$  Novel low x DPDF effects /non-linear dynamics?
- High Q<sup>2</sup> → Lever-arm for gluon, Flavour separation via EW
   Still no detailed DPDF sensitivity study ⊗

### New Region of Large Diffractive Masses

Large x<sub>IP</sub> region highly correlated with large Mx



- 'Proper' QCD (e.g. large  $E_T$ ) with jets and charm accessible
- New diffractive channels ... beauty, W / Z bosons
- Unfold quantum numbers / precisely measure new 1- states

# The More Distant Future: ep at a CERN Future Circular Collider



 $Q^2$  (GeV<sup>2</sup>), diffractive,  $x_p = 10^{-2}$ 



FCC-eh kinematics sensitive to diffractive structure in larger  $(\beta,Q^2)$  range than  $(x,Q^2)$  range sampled for the proton @ HERA!

- -Similarly for masses and transverse momenta of jets.
- W range for VMs → multi-TeV



#### **Summary**

- Diffractive processes play a pivotal role in ep Physics
  - Enhance / complement inclusive data in saturation search
  - Elucidate 3D structure
  - Have a rich standalone QCD physics programme
- There is complementarity between EIC and LHeC
- Lots still to be studied to fully make case in detail
  - Better modelling of simulated measurements
  - Propagation to underlying physics (GPDs, DPDFs)
  - Really detailed detector studies (sensors and layouts)