

Baseline Design (Electron "Linac") LHeC CDR, July 2012 [arXiv:1206.2913]

Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures

- LHeC ep lumi \rightarrow 10³⁴ cm⁻² s⁻¹
- \rightarrow ~100 fb⁻¹ per year \rightarrow ~1 ab⁻¹ total
- e-nucleon Lumi estimates ~ 10^{31} (3.10³²) cm⁻² s⁻¹ for eD (ePb)
- Similar schemes in collision with protons of 7 TeV (LHeC), 13 TeV (HE-LHeC) and 50 TeV (FCC-eh)

Physics Targets throughout Kinematic Plane

- Standalone Higgs programme
- Revolutionary proton PDF precision enhances LHC new physics sensitivity

- Elucidates low x dynamics in ep & eA

- 4 orders of mag. in kinematic range of nuclear structure

- No polarised targets

Detector Design: Philosophy

- Detector technologies evolve fast; current designs can only be indicative / based on current knowledge ... will change

- Conditions are relatively 'easy' fluences <~ 10⁵ 1 MeV n cm⁻² equiv (tiny fractions of HL-LHC) ... pile-up ~ 0.1 (cf 200 at HL-LHC)
- Current `baseline' remains 2012 CDR (with ongoing work in several areas)
 - → Leans heavily on LHC (esp. ATLAS) technologies
 (but they are over-spec'ed for radiation hardness)
 → Was costed at CHF106M core cost
- Most challenging technology aspects are interaction region (synchrotron) and ER linac

Fluences

Interaction Region & Magnets

- Dual dipole magnets (0.15 0.3 T) throughout detector region (|z| < 14m) bend electrons into head-on collisions
- Eliptical beampipe (6m x 3mm Be) accommodates synchrotron fan
- 3.5 T Superconducting NbTi/Cu solenoid in 4.6K liquid helium cryo.

Re-evaluating \rightarrow reduce synchrotron?

LHeC Detector Acceptance Requirements

Access to $Q^2=1$ GeV² in ep mode for all x > 5 x 10⁻⁷ requires scattered electron acceptance to 179°

Similarly, need 1° acceptance in outgoing proton direction to contain hadrons at high x (essential for good kinematic reconstruction)

Acceptance Requirements, Final States

C

θ cut on FS (°

Detector Design from the CDR (2012)

- Size 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
- 1º tracking acceptance in both forward & backward directions
- Forward & backward beam-line instrumentation integrated

Detector for ep at a Future Circular Collider

- Detector scales in size by up to ln(50/7)~ 2

e∓

- Double solenoid + Dipole

- Even longer track region to retain 1° performance

2000

fwd - tilted design

1000

-4000

-3000

bwd - planar design

-2000

-1000

for HV-CMOS (cf _{z [mm]} η EIC R&D programme)

4000

3000

Tracking Performance

From CDR \rightarrow Central track $\Delta p_t/p_t^2 \rightarrow 6 \times 10^{-4} \text{ GeV}^{-1}$ Impact parameter resolution: \rightarrow 10µm

10³

More recently \rightarrow - Studies of HE-LHeC," **Including services**

Evaluation of HF 10-3 tag performance (60% b, 30% c efficiency at 95% light quark rejection) \rightarrow Extend from 40 \rightarrow 60cm (H \rightarrow bb, cc)?

BeamPipe (3.5mm) & Active Materia

Barrel EM Calorimeter

- -2.3 < η < 2.8
- CDR accordion geometry baseline design
- 2.2mm lead + 3.8mm LAr layers
- Total depth ~ 20 X_0
- GEANT4 simulation of response to electrons at normal incidence

- Extended version (HE-LHeC) with 30 X₀ designed
 - Current re-evaluation of entire calorimeter in light of resolutions required for $H\rightarrow$ WW, bb, Top etc ...

Beamline Instrumentation

Luminosity / Photon Tagging

- Use Bethe-Heitler (as HERA), measurement based on photon
- 0.4 - Photons might be detected 0.2 at z = -120 m after D1 × [m] 0 proton bending dipole - With sufficient apperture -0.2 through Q1-Q3 magnets, -0.4 95% geometrical acceptance 200 - Signal via Cerenkov from synchrotron absorber coolant? \rightarrow 1% lumi measurement? \rightarrow Synchrorton OK?

Low Angle Electron Tagging

- Reinforce luminosity measurement
- Tag γp for measurements and as background to DIS

W (GeV)

10²

10

Methods for Diffraction

... old slide from diffraction at HERA

Partially still true for LHeC (but proton tagging technology 15 got better and kinematics make rapidity gap methods harder)

Rapidity Gap Selection with LHeC Kinematics

- $\eta_{max} v \xi$ (= x_{IP}) correlation determined entirely by proton beam energy ... [LHeC proton kinematics same as LHC]

- LHeC cut around $\eta_{max} \sim 3$ selects events with $x_{IP} < 10^{-3}$ (cf $x_{IP} < 10^{-2}$ at HERA), but misses lots of diffractive physics at largest dissociation masses, M_X

LHeC Forward Proton Spectrometer

- Proton spectrometer is a copy of FP420 (proposal for low ξ Roman pots at ATLAS / CMS - currently being revisited)

- Requires access to beam though cold part of LHC

- Acceptances under study with HL-LHC optics

Leading Neutrons

- Crucial in eA, to determine whether nucleus remains intact e.g. to distinguish coherent from incoherent diffraction

- Crucial in ed, to distinguish scattering from proton or neutron
- Possible "straight on" space at z ~ 100m
- For technology, learn from LHC

distance from IP / m

- CDR 2012

Summary

- Since then 1) Possibility of 10³⁴ cm⁻² s⁻¹ → new environment
 2) LHC Higgs discovery → new physics focus
 3) Longer term perspective of HE-LHeC / FCC-eh
- Current ongoing work: optimize w.r.t. precision physics, H, t ... re-evaluation of tracking & calorimetry, interaction region

- Next goal ...

1) Update CDR (physics, technical) \rightarrow "The LHeC at High Luminosity" converging at workshop in October 2019

