Proton and Nuclear Collinear Parton Densities at the Electron-Ion Collider using simulated ATHENA data

DIS'22 (Santiago de Compostela) 2-6 May 2022

> Paul Newman (Birmingham) with

Nestor Armesto (Santiago de Compostela), Tom Cridge (UCL London), Francesco Giuli (CERN), Lucian Harland-Lang (Oxford), Barak Schmookler (UC Riverside), Robert Thorne (UCL London), Katarzyna Wichmann (DESY), Qinghua Xu (Shandong)

... with thanks to all colleagues who worked on the ATHENA proposal

Collinear PDFs and the EIC

- EIC will be world's first ...
- eA collider
- High lumi ep Collider
- Polarised target collider
- [Talks by T Kutz, B Schmookler]
- Here, explore potential EIC impact on our knowledge of unpolarised collinear eA and ep parton densities.

Previous Work

- Several groups previously investigated EIC sensitivity to collinear PDFs, most recently in the context of the 2020/21 Yellow Report

Proton PDFs [arXiv:2103.05419]

Nuclear PDFs [PRD 96 (2017) 114005]

- Studies here are closely related, but more up-to-date on planned datasets at different \sqrt{s} and backed up by much more detailed detector simulations
- They also introduce new global and non-global PDF fitting techniques.

ATHENA @ EIC

- ATHENA was one of three detector proposals for the EIC (publication in JINST pending).

- Input data here based on simulated ATHENA performance (acceptance, resolutions, systematics), building on studies in Yellow Report

- Results here more-or-less equally applicable to any EIC general purpose detector (similar studies were done in ECCE context)

- Ongoing process to combine ATHENA with ECCE proposals \rightarrow towards the EIC `project detector', as well as ongoing discussions about a second EIC detector

ATHENA Detector Proposal

A Totally Hermetic Electron Nucleus Apparatus proposed for IP6 at the Electron-Ion Collider

[Talk by B Surrow]

The ATHENA Collaboration December 1, 2021

SCIENCE REQUIREMENTS AND DETECTOR CONCEPTS FOR THE ELECTRON-ION COLLIDER

EIC Yellow Report

Input Data (ep)

[Poster by S Maple]

- Detailed simulation work to optimise resolutions throughout phase-space
- \rightarrow 5 bins per decade in x and Q²
- Kinematic coverage: Q² > 1 GeV²,
 0.01 < y < 0.95, W > 3 GeV
- Lower y accessible in principle, but easier to rely on overlaps between data at different \sqrt{s}
- Highest x bin centre at x=0.815

e-beam E	p-beam E	\sqrt{s} (GeV)	inte. Lumi. (fb ⁻¹)
18	275	140	15.4
10	275	105	100.0
10	100	63	79.0
5	100	45	61.0
5	41	29	4.4

- CC data also included for highest \sqrt{s}

Input Data (eA)

Similar approach for eA ... Per-nucleon integrated luminosities:

5 x 41GeV:	4.4 fb ⁻¹
10 x 110GeV:	79 fb⁻¹
18 x 110GeV:	79 fb⁻¹

Systematic Precision

- Dominant sources at HERA were
 - Electron energy scale (intermediate y)
 - Photoproduction background (high y)
 - Hadronic energy scale / noise (low y)

- EIC will improve in all areas (e.g. dedicated ATHENA particle ID detectors allow π/e contamination at 10⁻⁶ level at low momenta)

- ATHENA systematic precision compatible with assumptions in Yellow report:

 \rightarrow 1.5-2.5% point-to-point uncorrelated

 \rightarrow 2.5% normalisation (uncorrelated between different \sqrt{s}) 6

Investigating impact on PDF sets: Fitting procedure

- 1) Get prediction from PDF set for each ATHENA pseudodata (x-Q²) point
- 2) Smear pseudodata with uncorrelated uncertainties point-by-point
- 3) Smear pseudodata with normalisation systematic uncertainty at each \sqrt{s}
- 4) Perform fit with standard input data plus ATHENA data
- 5) Compare uncertainties with those from fit without ATHENA data

Impact on HERAPDF2.0 Proton PDFs

- `DIS-only', HERA (or HERA+EIC/ATHENA) data
- Using xFitter framework

10⁵

10⁴

 10^{3}

10²

10

10⁻¹

 10^{-2}

10-4

Q²/GeV²

[EPJ C75 (2015) 304 Talk by F Giuli,]

- PDF parameterisations (14 parameters) $xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2}) \dots$ for ... $xg(x), xu_{v}(x), xd_{v}(x), x\overline{U}(x), x\overline{D}(x)$

Variation	Standard Value	
$Q_{ m min}^2$ [GeV ²]	3.5	
$Q^2_{ m min}$ [GeV ²] HiQ2	10.0	
$M_c(\text{NLO})$ [GeV]	1.47	
M_c (NNLO) [GeV]	1.43	
M_b [GeV]	4.5	
f_s	0.4	
$\alpha_s(M_Z^2)$	0.118	
μ_{f_0} [GeV]	1.9	

Takl by K Wichmann]

HERA data have limited high x sensitivity due to kinematic correlation between x and Q² and 1/Q⁴ factor in cross section

HERA dhigh x s
kinem
betwee
1/ 10^6 10^5 10^4 10^3 10^2 10^1 1 x_{Bj}

PDFs from HERAPDF2.0 ($Q^2 = 10 \text{ GeV}^2$)

By construction, PDFs not changed by adding ATHENA data

Impact of EIC/ATHENA on HERAPDF2.0

Fractional total uncertainties with / without EIC / ATHENA data included along with HERA

(linear x scale)

... EIC will bring significant reduction in uncertainties for all parton species at large x

Impact of EIC/ATHENA on HERAPDF2.0

$$xU = xu + xc$$

$$x\bar{U} = x\bar{u} + x\bar{a}$$

$$xD = xd + xs$$

$$x\bar{D} = x\bar{d} + x\bar{s}$$

Impact relative to Global Fits

- Global fits connstrain high x region with fixed-target (eA) DIS + PDF-sensitive LHC data \rightarrow improves precision, but adds theoretical complexity, requiring increased tolerances where there are tensions

MSHT20 [EPJ C81 (2021) 4 Talk by L Harland-Lang]

- Parameterisations using Chebyshev polynomials (52 parameters in total)

$$xf(x,Q_0^2) = A(1-x)^{\eta} x^{\delta} \left(1 + \sum_{i=1}^n a_i T_i^{Ch}(y(x))\right)$$

- Data with $Q^2 > 2 \text{ GeV}^2$, $W^2 > 15 \text{ GeV}^2$
- $m_c = 1.40 \text{ GeV}, m_b = 4.75 \text{ GeV},$ $\alpha_s = 1.118$, starting scale $\mu_{f0} = 1.0 \text{ GeV}$

Impact relative to MSHT20

Sensitivity to Low x Effects in ep?

- HERAPDF fits repeated with inclusion of log(1/x) resummation in simulated data and for fitting (NLLx via HELLx+APFEL, starting from $Q^2 = 2.5 \text{ GeV}^2$)

- EIC/ATHENA gives mild effect on gluon uncertainty at low x. Other PDFs unaffected
- Little or no sensitivity in ep data, due to restricted low x kinematic range compared with HERA
- Similar studies with nuclear targets will be interesting ...

EIC / ATHENA and nuclear PDFs

EIC will have revolutionary impact on eA phase space: \rightarrow most promising environment to observe novel low x effects

Studies performed in xFitter framework to assess sensitivity of ATHENA relative to EPPS16

EPPS16 [EPJ C77 (2017) 163]

- Uses fixed target DIS and Drell-Yan data, hard processes from pA at the LHC and PHENIX $\pi^{\rm 0}$ data

$$f_i^{p/A}(x,Q^2) = R_i^A(x,Q^2)f_i^p(x,Q^2)$$

20 free params: $R_{i}^{A}(x,Q_{0}^{2}) = \begin{cases} a_{0} + a_{1}(x - x_{a})^{2} & x \leq x_{a} \\ b_{0} + b_{1}x^{\alpha} + b_{2}x^{2\alpha} + b_{3}x^{3\alpha} & x_{a} \leq x \leq x_{e} \\ c_{0} + (c_{1} - c_{2}x)(1 - x)^{-\beta} & x_{e} \leq x \leq 1, \end{cases}$

 μ_{f0} = m_c = 1.3 GeV, m_b = 4.75 GeV, α_s = 1.118

Impact on Nuclear PDFs: Gluon

Projected uncertainty on gluon density of proton from ATHENA-only fit

Projected uncertainty on gluon density of (gold) nucleus from ATHENA-only fit \rightarrow ~10%

Projected uncertainty on nuclear modification factor, ATHENA-only compared with EPPS'16 → Factor ~ 2 improvement at x~0.1 (tolerances) → Very substantial improvement in newly accessed low x region¹⁷

Impact on Nuclear PDFs: ubar and uv

Similarly compelling improvements at low x for quark distributions

Summary

General Purpose Detectors at the Electron Ion Collider will provide transformational input to collinear parton densities with wide-ranging impact

- eA measurements in the low x region for the first time
 → Knowledge of nuclear PDFs (especially gluon) in the
 low x region
 → Key to EIC physics programme of exploring new
 strong interaction dynamics in densely packed gluon systems.

- Precise ep data in large x region covering wide range of large(ish) Q²:

→ Precision on all proton PDF species from an
 experimentally and theoretically cleaner DIS-only extraction
 → Key to optimizing sensitivity to new BSM physics
 near to kinematic limit at the LHC and elsewhere