Diffraction from HERA to the LHC

Paul Newman (University of Birmingham)

- → Defining diffractive cross sections
- → Modelling the Pomeron Flux Factor
- → Modelling soft diffractive cross sections
- → Modelling hard diffractive cross sections
- → Modelling diffractive particle production

HERA & Diffraction

ep / $\gamma^{(*)}$ p collisions at sqrt(s) ~ 300 GeV 1992-2007

 $\sim 0.5 \text{ fb}^{-1} \text{ per expt.}$

e.g. H1 publications on diffraction (similar numbers in ZEUS):

- Diffractive cross sections (SD,DD): 11 papers

- Diffractive final states: 14 papers

- Quasi-elastic cross sections: 20 papers

- Total cross sections / decomposition: 2 papers

HERA-LHC Workshop 2004-2008

Workshops on the implications of HERA for the LHC

(including many contributions on diffraction ...)

Procedings available from http://www.desy.de/~heralhc 807 pages! (March 2009)

Impressum

Proceedings of the workshop HERA and the LHC

2nd workshop on the implications of HERA for LHC physics 2006 - 2008, Hamburg - Geneva

Conference homepage http://www.desy.de/~heralhc

Online proceedings at

http://www.desy.de/~heralhc/proceedings-2008/proceedings.html

Colour singlet exchange processes at HERA

Favourable kinematics to study X system (photon dissociation)

Diffraction as a Dominant Uncertainty in

Minimum Bias Analyses

e.g. uncertainties on total cross section measurements dominated by modelling of diffractive contributions not observed in central detectors

- SD and DD cross sections strongly anti-correlated in this H1 analysis
- Impossible to uniquely define ND, DD, SD ...

... operational definitions e.g. $M_X^2/s < 0.05$... ND is what's left

Processes and Kinematic Variables

HERA data are most relevant to low the processes at the LHC:

- Single diffractive (SD), $pp \rightarrow Xp$

- Double diffractive (DD), pp → XY

-At LHC energies, M_X , M_Y can range from $m_n + m_\pi \rightarrow \sim 1 \text{ TeV}$

Useful variable ...

$$\xi = M_X^2/s$$

For DD ...

$$\xi_y = M_y^2/s$$

Final State Particle Production

Once generator has decided to produce an SD event with a given ξ , details of particle production within X system follow same models as non-diffractive processes, but at

reduced energy: $sqrt(s) \rightarrow M_x$

In hard diffraction at HERA, this approach was highly successful, provided the chosen DPDFs are accurate

Lots of experimental support ... >20 HERA papers

Definition of Diffraction?

Nature provides a smooth transition between DD and ND processes, so how do we specify what is 'diffraction'?

Definition of Diffraction?

Nature provides a smooth transition between DD and ND processes, so how do we specify what is 'diffraction'?

Definitions in terms of hadron-level observables rather than particular processes!...

- For SD ($\gamma p \rightarrow Xp$), can be done in terms of a leading proton
- More general definition to accommodate DD ($\gamma p \rightarrow XY$) ...can be applied to any diff or non-diff final state ...
 - Order all final state particles in rapidity
- Define two systems, X and Y, separated by the largest rapidity gap between neighbouring particles.

Many tests at HERA show leading proton & gap defs equivalent

Single Diffractive Photon Dissociation

Basic `proton vertex' factorisation hypothesis ... withstood many HERA tests

- Lots of analyses extracted pomeron flux $f_{\rm IP/p}$ from (quasi)-elastic and single diffractive cross sections ... directly related to same vertex in pp scattering
- Total cross section σ_{tot} (IP + $\gamma \rightarrow X$) described by:
 - Triple Regge phenomenology for soft processes
 - Diffractive parton densities (DPDFs) for hard processes

Pomeron Flux Factor from Single Diffraction

All x_{IP} and t dependence contained in flux factor. Standard parameterisation based on Regge theory ...

$$f_{IP/p}(x_{IP},t) = \frac{e^{B_{IP}t}}{x_{IP}^{2\alpha_{IP}(t)-1}}$$
 $\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP}t$

e.g. H1 LPS Diffractive DIS:

$$\alpha_{IP}(0) = 1.12 \pm 0.01(\text{exp.}) \pm 0.02(\text{model})$$

$$\alpha'_{IP} = 0.04 \pm 0.02 \text{ (exp.)} \pm 0.03 \text{ (mod.)}$$

$$B_{IP} = 5.7 \pm 0.3 \text{ (exp.)} \pm 0.6 \text{ (mod.)}$$

Some or all of this should be instantly transportable to LHC, but not used in PYTHIA or PHOJET 🕾

PYTHIA8 Pomeron Flux Models

- Default Schuler & Sjostrand flux and more standard(?) Donnachie & Landshoff show significantly different ξ dependences when viewed over huge ξ range at LHC
- Not enough to vary $\sigma(SD)$, $\sigma(DD)$ when assessing diffraçtive cross section model uncertainties @ LHC

Soft Diffractive pp Cross Sections

1) Factorise SD into a pomeron (IP) flux and a total p+IP

cross section

$$f_{IP/p}(\xi,t)$$

$$\sigma_{tot}(IP + p \rightarrow X)$$

2) Similarly to total pp cross section, relate total p+IP cross section to forward elastic amplitude via optical theorem

3) Calculate SD cross sections from triple pomeron amplitudes

[similar treatment for DD]

Soft Photoproduction SD Cross Section

Triple pomeron
$$\rightarrow \frac{d\sigma}{dtdM_X^2} = \frac{1}{16\pi} g_{3IP}(t) \beta_{pIP}(t)^2 \beta_{\gamma IP}(0) s^{2\alpha(t)-2} M_X^{2[\alpha(0)-2\alpha(t)]}$$

Complication: Triple Regge diagrams can have non-pomeron as well as pomeron contributions

 Example fit to H1 and fixed target $\gamma p \rightarrow Xp$ data shows non-diffractive contributions present at small s and large x_{TP} .

Sub-Leading Terms and pp→ pX

Ancient (ISR) triple Regge phenomenology of $pp \rightarrow pX$

Roberts & Roy: NP B77 (1974) 240 Field & Fox: NP B80 (1974) 367

- Sub-leading terms suppressed like 1/sqrt(s) or stronger
 ... negligible at LHC,
- · Perhaps influence assumed 3IP coupling in MC models?

PHOJET Implementation

- Cross section based on triple pomeron model with standard pomeron $\alpha(0)$ = 1.08
- Sharp cut at steerable large ξ [default ~0.4?]
- No low ξ enhancement

PYTHIA Implementation

- Triple pomeron model. By default $\alpha(0)$ = 1 (!)
- Fudge factors applied to suppress large ξ , give a low ξ enhancement and prevent X and Y systems overlapping in DD

$$\frac{\mathrm{d}\sigma_{\mathrm{sd}(AX)}(s)}{\mathrm{d}t\,\mathrm{d}M^2} = \frac{g_{3\mathbb{P}}}{16\pi} \beta_{A\mathbb{P}}^2 \beta_{B\mathbb{P}} \frac{1}{M^2} \exp(B_{\mathrm{sd}(AX)}t) F_{\mathrm{sd}}$$
$$F_{\mathrm{sd}} = \left(1 - \frac{M^2}{s}\right) \left(1 + \frac{c_{\mathrm{res}} M_{\mathrm{res}}^2}{M_{\mathrm{res}}^2 + M^2}\right)$$

- Exactly the same default in PYTHIA8, but now with 3 other parameterisations available

Hard Processes: Diffractive PDFs

DPDFs dominated by a gluon density which extends to lange z

Good and Bad DPDFs

Using DPDFs with no gluons at starting scale:

- Particle flow & spectra wrong
- Jet cross sections factor ~5
 too small

- ...

Predicting Tevatron Data

Tevatron effective DPDFs from dijets show strong factorⁿ breaking compared with HERA DPDFs ... 'gap survival' factor $S^2 \sim 0.1$

... usually explained by multiple interactions / absorption

- Rapidity gap survival probabilities / multiple interactions relevant not only to (short-distance) gaps between jets
- Also relevant to partonic processes in pp→pX at low t (large impact parameter)

Hard Diffraction in MCs PHOJET

- Fairly standard IP flux
- Two components (soft / hard)
- Divided at $p_T = 3 \text{ GeV}$
- (Old) CKMT model of DPDFs

PYTHIA8

- Choice of (old) IP fluxes
- Two component (soft / hard)
- Divided according to smooth turn-on
- Hard component dominates at LHC
- Choice of modern DPDFs for hard part

RAPGAP / POMWIG

- Hard component only
- Consistent use of flux and DPDFs from fits to HERA data

Summary

There are many areas where HERA experience and results provide potentially vital input to LHC modelling of soft and hard diffractive dissociation

- Cross Section Definitions
- Pomeron Flux modelling
- Diffractive Parton Densities
- Final state particle production

This information is not yet all implemented in MC models

Another missing ingredient - rapidity gap survival probability

HERA+Tevatron+LHC data considered together can teach us a lot about

- Colour singlet exchange
- Multiple interactions ...

Big opportunity while diffrⁿ is major current LHC topic¹

Back-ups

Comparisons between Methods

- · LRG selections contain typically 20% p diss
- · No significant dependence on any variable
- · Similar compatibility with Mx method
- ... well controlled, precise measurements

Comparison between Cross Sections

900 GeV Single Diffractive ξ Distribution

- Big difference between PHOJET and PYTHIA cross sections at small and large $\boldsymbol{\xi}$
- Different tunes of PYTHIA6 and PYTHIA8 are very similar