Diffraction at the LHeC

Paul Newman Birmingham University

Diffraction 2014 Primosten, Croatia 11 September 2014

- A Lepton-hadron collider for the 2020s / 2030s, based on the high lumi LHC
 Adding ep and eA collisions to
- the LHC pp, AA, pA programme

LHeC Context

Lepton-hadron
scattering at the TeV
centre of mass scale
(60 GeV electrons x
LHC protons & ions)

- High luminosity: 10³³ - 10³⁴ cm⁻² s⁻¹

- Runs simultaneous with ATLAS / CMS in post-LS3 HL-LHC period

Baseline[#] Design (Electron "Linac")

Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures [CERN plans energy recovery prototype]

- ep Lumi 10³³ 10³⁴ cm⁻² s⁻¹
- \rightarrow 10 100 fb⁻¹ per year
- → 100 fb⁻¹ 1 ab⁻¹ total
- eD and eA collisions have always been integral to programme
- e-nucleon Lumi estimates ~ 10^{31} (10^{32}) cm⁻² s⁻¹ for eD (ePb)

Alternative designs based on electron ring and on higher energy, lower
 3 luminosity, linac also exist

Physics Overview

Wide ranging and varied physics goals require precision throughout accessible region.

Newly accessed low x region is special.

High density, small coupling partonic regime of non-linear evolution dynamics, dominated by gluons \rightarrow confinement and hadronic mass generation 4

LHeC: Accessing saturation region at large Q²

ln 1/x

LHeC delivers a 2-pronged approach:

Enhance target `blackness' by: ep 1) Probing lower x at fixed Q^2 in ep [evolution of a single source] DILUTE REGION 2) Increasing target matter in eA [overlapping many sources at fixed kinematics ... Density ~ $A^{1/3}$ ~ 6 for Pb ... worth 2 orders of magnitude in x]

... Reaches saturated region in both ep & eA inclusive data according to models

In A

[fixed Q]

DENSE REGION

eA

Low x Acceptance Requirements

Detector Design Overview

- Forward / backward asymmetry reflecting beam energies
- 1º electron hits two tracker planes
- Present size 14m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)

Low x PDF Constraints

Full simulation of inclusive NC and CC DIS data, including systematics \rightarrow NLO DGLAP fit using HERA technology...

Current gluon knowledge at x<10⁻⁴ very limited, even with LHC

LHeC offers strong constraints to x=10⁻⁶, including full flavour decomposition

Selecting Diffraction

- η_{max} cut around 3 selects events with $x_{IP} < 10^{-3}$

- `FP420'-style proton ^(t) spectrometer approaching beam to 12σ (~250 µm), gives

complementary acceptance around x_{IP} ~ 10⁻²

- Leading neutron (ZDC) calorimeter foreseen around 100m from IP

Exclusive / Diffractive Channels and Saturation

v* vv

р

е

g g g

hris

V

X (M_x)

р

р

- 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon
- 2) Additional variable t gives access to impact parameter (b) dependent amplitudes
 - \rightarrow Large t (small b) probes densest packed part of proton?

Test Case: Elastic J/\Psi Photoproduction

- `Cleanly' interpreted as hard 2g exchange coupling to qqbar dipole (see HERA/LHC UPC data via MNRT etc) ^{(W}
- c and c-bar share energy equally, simplifying VM wavefunction
- Clean experimental signature (just 2 leptons)
- ... LHeC reach extends to: $x_g \sim (Q^2 + M_V^2) / (Q^2 + W^2) \sim 5.10^{-6}$

$$\overline{Q^2} = (Q^2 + M_V^2) / 4 \sim 3 \text{ GeV}^2$$

• Simulations (DIFFVM) of elastic $J/\Psi \rightarrow \mu\mu$ photoproduction \rightarrow scattered electron untagged, 1° acceptance for muons (similar method to H1 and ZEUS)

• At fixed \sqrt{s} , decay muon direction is determined by W = $\sqrt{s_{\gamma p}}$

• To access highest W, acceptance in outgoing electron beam direction crucial

Comparison with Dipole model Predictions

- e.g. "b-Sat" Dipole model - "eikonalised": with impact-parameter dependent saturation
- "1 Pomeron": non-saturating

• Significant non-linear effects expected in LHeC kinematic range.

With detailed exploration of ep and eA, including t dependences, this becomes a powerful probe!...

t Dependence of Elastic J/ ψ Photoproduction

• J/ ψ photoproduction double differentially in W and t ...

- Precise t measurement from decay μ tracks over wide W range extends to $|t| \sim 2 \ GeV^2 \ and \ enhances sensitivity to \ saturation effects$

• Measurements also possible in multiple Q² bins

Exclusive Diffraction in eA

Experimentally clear signatures and theoretically cleanly calculable saturation effects in coherent diffraction case (eA \rightarrow eVA)

Experimental separation of incoherent diffraction based mainly on ZDC

Deeply Virtual Compton Scattering

No vector meson wavefunction
 Complications

• Cross sections suppressed by photon coupling

 \rightarrow limited precision at HERA

 \rightarrow would benefit most from high luminosity of LHeC

 Simulations based on FFS model in MILOU generator
 → Double differential distributions in (x, Q²) with 1° and 10° cuts for scattered electron
 → Kinematic range determined largely by cut on p_T^γ (relies on ECAL performance / linearity at low energies)

DVCS with low luminosity & high acceptance

1 fb⁻¹, $E_e = 50$ GeV, 1° acceptance, $p_T^{\gamma} > 2$ GeV

- Precise double differential data in low Q² region
- Statistical precision deteriorates for Q² >~ 25 GeV²
- W acceptance to ~ 1 TeV (five times HERA)

DVCS with high luminosity and low acceptance

100 fb⁻¹, $E_e = 50$ GeV, 10° acceptance, $p_T^{\gamma} > 5$ GeV

• High lumi gives precision data to Q^2 of several hundred GeV² \rightarrow Completely unprecedented region for DVCS / GPDs

- Low $x_{IP} \rightarrow$ cleanly separate diffraction
- Low $\beta \rightarrow$ Novel low x DPDF effects /non-linear dynamics?
- High $Q^2 \rightarrow$ Lever-arm for gluon, Flavour separation via EW

New Region of Large Diffractive Masses Large x_{IP} region highly correlated with large Mx

- `Proper' QCD (e.g. large E_T) with jets and charm accessible
- New diffractive channels ... beauty, W / Z bosons
- Unfold quantum numbers / precisely measure new 1⁻ states

F₂^D and Nuclear Shadowing

Nuclear shadowing can be described (Gribov-Glauber) as multiple interactions, starting from ep DPDFs

... starting point for extending precision LHeC studies into eA collisions

The More Distant Future: ep at a CERN Future Circular Collider

First studies with current electron design, ($E_e = 60 \text{ GeV}$) enhanced with crab cavities, and $E_p=50 \text{ TeV}$. Detector, scaled by up to ln(50/7) ~ 2

 $\rightarrow \int s_{ep} = 3.5 \text{ TeV}$, Lumi = few. 10³⁴ cm⁻²s⁻¹

Low x and Diffraction at an ep FCC

Sensitive to gluon density down to $x \sim 10^{-7}$ for Q²>1 GeV² e.g. exclusive J/ Ψ photoproduction to W~3 TeV \rightarrow No detailed studies done so far

Status and Plans

- CDR 2012 (630 pages, summarising 5 year workshop. 200 authors from 69 institutes)
- Renewed interest following
 - 1) Possibility of 10³⁴ cm⁻² s⁻¹ luminosity
 - 2) Higgs discovery \rightarrow closer look at what limits HL-LHC sensitivity and precision,
 - Associated technical developments (High gradient cavities, Energy recovery linacs)
- New International Advisory Committee and Coordination Group set up by CERN, with mandate to further develop LHeC, also in context of FCC.
- Low x / eA group (N Armesto, P Newman, A Stasto)
 → Please contact us ...

Summary

- Low x physics is Strong Interaction energy frontier: discovery!
 - Dense partonic systems \rightarrow correlations / interactions
 - Onset of non-linear dynamics \rightarrow Gribov black-disk limit \rightarrow Confimement, Hadronic mass generation ...
- Diffraction plays a pivotal role:
 - Enhances / complements inclusive data in saturation search
 - Parton correlations, impact parameter dependence
- Lots still to be studied to fully make case for LHeC and FCC-he
 - Better modelling of simulated LHeC measurements
 - Propagation to underlying physics (GPDs, DPDFs)
 - Poorly covered LHeC topics, FCC studies barely began
- More, at LHeC web http://lhec.web.cern.ch and ...
- LHeC Study Group (CDR), J Phys G39 (2012) 075001
- Klein & Schopper, CERN Courier, June 2014
- Newman & Stasto, Nature Phys 9 (2013) 448 25
- Bruening & Klein, Mod Phys Lett A28 (2013) 1130011

Back-ups

Diffractive DIS, Dipole Models & Saturation

Inclusive Cross Section

$$\sigma_{T,L}(x,Q^2) = \int d^2 \mathbf{r} \int_0^1 d\alpha \, |\Psi_{T,L}(\alpha,\mathbf{r})|^2 \hat{\sigma}(x,r^2)$$

Diffractive DIS

$$\frac{d\sigma_{T,L}^D}{dt}\Big|_{t=0} = \frac{1}{16\pi} \int d^2 \mathbf{r} \int_0^1 d\alpha \, |\Psi_{T,L}\left(\alpha,\mathbf{r}\right)|^2 \hat{\sigma}^2\left(x,r^2\right)$$

Extra factor of dipole cross section weights DDIS cross section towards larger dipole sizes \rightarrow enhanced sensitivity to saturation effects.

Signals in t Dependences: e.g. J/ψ Photoproduction

t dependences measure Fourier transform of impact parameter distribution. \rightarrow Unusual features can arise from deviations from Gaussian matter distribution e.g. Characteristic dips in model by Rezaeian et al,

(just) within LHeC sensitive t range.

Also relevant to absorptive corrections, cosmic ray physics ...

Establishing Saturation in Inclusive Data (Lack of) quality of NNPDF fit to F_2 and F_L pseudodata with saturation effects included ...

• Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 v F_L$ in ep or F_2 in ep v eA

<u>Conceptual Design Report</u> (July 2012)

[arXiv:1206.2913]

Substantial low x chapter

(81 pages, 34 authors)

See also talks by Nestor and Hannu

Physics at High Parton Densities 1024 4.1 4.1.14.1.24.1.3 4.1.4 4.24.2.14.2.24.2.34.2.44.2.5Jet and multi-jet observables, parton dynamics and fragmentation . . 167 4.2.6Implications for ultra-high energy neutrino interactions and detection 179

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Repert on the Physics and Design Cencepts for Machine and Detector LHeC Study Group

Filling up the Proton

Lines of constant 'blackness' ~diagonal in kinemaic plane ... Scattering cross section appears constant along them (`Geometric Scaling')

Limited previous evidence in ep and eA restricted to small $Q^2 <~ 1 \text{ GeV}^2$.

 \rightarrow Partonic interpretation precluded

Usual to implement via `dipole models', with saturation built into dipole-proton x-section.

Signatures and Selection Methods at HERA

- Allows t measurement, but limited by stats, p- tagging systs

2) Select Large Rapidity Gaps

-Limited by control over proton dissociation contribution

- Methods have very different systematics \rightarrow complementary
- What is possible at LHeC?...

Forward Proton Spectrometer

With `FP420'-style proton spectrometer approaching beam to 12σ (~250 µm), can tag and measure elastically scattered protons with high acceptance over a wide x_{IP}, t range

Complementary acceptance to Large Rapidity Gap method

Together cover full range of interest with some redundancy

Leading Neutrons

- Crucial in eA, to determine whether nucleus remains intact e.g. to distinguish coherent from incoherent diffraction

- Crucial in ed, to distinguish scattering from p or n
- Forward $\boldsymbol{\gamma}$ and n cross sections relevant to cosmic ray physics

- Has previously been used in ep to study π structure function

Possible space at z ~ 100m (also possibly for proton calorimeter)

... to be further investigated

Assumed Systematic Precision

In the absence of a detailed simulation set-up, simulated `pseudo-data' produced with reasonable assumptions on systematics (typically 2x better than H1 and ZEUS at HERA).

	LHeC	HERA
Lumi [cm ⁻² s ⁻¹]	10 ³³	1-5*10 ³¹
Acceptance [°]	1-179	7-177
Tracking to	0.1 mrad	0.2-1 mrad
EM calorimetry to	0.1%	0.2-0.5%
Hadronic calorimetry	0.5%	1-2%
Luminosity	0.5%	1%

CDR Parameters - LHeC

10 ³³ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	1	1
Normalized emittance γε _{x,y} [μm]	3.75	50
Beta Function $\beta_{x,y}^{*}$ [m]	0.1	0.12
rms Beam size σ [*] _{x,y} [μm]	7	7
rms Beam divergence σ΄ _{x,y} [μrad]	70	58
Beam Current [mA]	430 (860)	6.6
Bunch Spacing [ns]	25 (50)	25 (50)
Bunch Population	1.7*10 ¹¹	(1*10 ⁹) 2*10 ⁹
Bunch charge [nC]	27	(0.16) 0.32

"Ultimate" proton beam parameters

100 times HERA Luminosity and 4 times cms Energy

Advanced Luminosity Parameters^{*)} - LHeC

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [μm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ [*] _{x,y} [μm]	4	4
rms Beam divergence σ΄ _{x,y} [μrad]	80	40
Beam Current [mA]	1112	25
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64

HL-LHC proton beam parameters

*) under study now Max Klein, Susdal, 8/2014

1000 times HERA Luminosity and 4 times cms Energy

LHeC Sensitivity to Different Saturation Models

With 1 fb⁻¹ (1 month at 10^{33} cm⁻² s⁻¹), F₂ stat. < 0.1%, syst, 1-3% F_L measurement to 8% with 1 year of varying E_e or E_p

F_2 and F_L pseudodata at $Q^2 = 10 \text{ GeV}^2$

• LHeC can distinguish between different QCD-based models for the onset of non-linear dynamics

... but can satⁿ effects hide in standard fit parameterisations?

- Satⁿ effects smaller than J/Ψ (smaller dipole sizes, higher x).
- Cross sections also much smaller than for J/Ψ .
- Huge increase over HERA range \rightarrow anomalously large HERA cross sections can be tested.