Differential Cross Sections for Single Diffractive Dissociation using ALFA

Paul Newman (Birmingham) on behalf of the ATLAS Collaboration

ATLAS Paper ATLAS-CONF-2019-012 8th April 2019

Measurement of Differential Cross Sections for Single Diffractive Dissociation in $\sqrt{s} = 8$ TeV *pp* collisions using the ATLAS ALFA Spectrometer

The ATLAS Collaboration

A dedicated sample of Large Hadron Collider proton-proton (pp) collision data at centre-ofmass energy $\sqrt{s} = 8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system X are measured in the central detector components. Cross sections are measured differentially as functions of the proton fractional energy loss ξ , the four momentum transfer squared t, and $\Delta\eta$, a variable that characterises the rapidity gap separating the proton and the system X. The data are consistent with an exponential t dependence, $d\sigma/dt \propto e^{Bt}$ with slope parameter $B = 7.60 \pm 0.32$ GeV⁻². Interpreted in the framework of Regge phenomenology, the ξ dependence leads to a Pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.

Workshop on Forward Physics & Diffraction at the LHC UC Dublin, 10-13 June 2019

Orientation: Processes

`Standard' Model of SD Cross Sections

1) Factorise SD into pomeron (IP) flux and total p+IP cross section

2) Relate total p+IP cross section to forward elastic amplitude via optical theorem
3) Calculate SD cross sections from triple pomeron amplitudes:

At fixed s:
$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\xi \mathrm{d}t} \propto \left(\frac{1}{\xi}\right)^{2\alpha(t) - \alpha(0)} e^{B_0 t}$$

$$\alpha(t) = \alpha(0) + \alpha' t$$

Note: PYTHIA default non-standard. $\alpha(0) = 1$, const $\sigma(IP + p)$

 IP
 x

 p
 p

 x
 x

 x
 x

$$f_{IP/p}(\xi,t)$$

Pre-LHC Data and Expectations

Crudely, expect SD cross section:

- scales with s at fixed Mx, t
- ~ $1/M_x^2$ at fixed s and t
- ~ e^{bt} with b ~ 8 GeV⁻² at fixed s and M_x

More precisely:

 α (t) has been determined from M^2 (Ge many total, elastic and dissociation measurements at ISR, SPS, Tevatron, HERA ... Small deviations from these scaling rules

Lots of freedom for deviation from triple pomeron behavior (sub-leading terms, multiple exchanges / 'screening')

$\Delta\eta \approx -\ln\xi$ (Correlation limited by hadronisation fluctuations)

Example Large Rapidity Gap event in ATLAS

Gap size (extending to $\eta \sim$ 1) implies $\xi \sim$ 10⁻⁴

Previous ATLAS Data / Motivation

- Previous ATLAS constraints on SD come from large rapidity gap measurement (protons not tagged) ... Large ambiguities - ND, DD

- More motivations for better data:

- Precision on σ_{inel} (limited by low ξ extrapolation)
- Pile-up modelling
- Cosmic ray air showers
- Confinement
- String theory duality (AdS/CFT) \odot

A-side C-side

- Directly tag outgoing proton in ALFA Roman pot spectrometer [4 stations at ~240m from interaction point].
- 2) Dissociating proton yields charged particles in the Minimum Bias Trigger Scintillator (MBTS trigger) **Detector characteristics** Muon Detectors Width: 44m **Electromagnetic Calorimeters** Diameter: 22m Weight: 7000t $z = \pm 3.6m, 2.1 < |\eta| < 3.9$ CERN AC - ATLAS V1997 Solenoid Forward Calorimeters End Cap Toroid 3) Charged particles measured precisely

Inner Detector

Hadronic Calorimeters

Shieldina

Barrel Toroid

in inner tracking detector (ID) $|\eta| < 2.5$

Summary of Measurement Conditions

- Data from low lumi and pile-up run ($\mu = 0.08$,
- $\beta^* = 90m \dots$ same as used

- in 8TeV ALFA elastic / total cross-section)
- Main MC sample PYTHIA8 A3 tune (DL flux $\alpha(0) = 1.08$)

PYTHIA8 A2 (S&S flux - $\alpha(0) = 1$) and HERWIG7 also considered

- Trigger: ALFA and MBTS signals on opposite sides of the IP
- ALFA Selection: Exactly one reconstructed proton with additional off-line selection for SD events (next slide)
- MBTS: At least 5 counters above noise threshold
- Inner Detector: \geq 1 track with pT > 200 MeV
- Reconstructed vertex

Final ALFA Selection: Mean x position v $\theta(x,z)$ of 2 pots

- SD events lie close to (0,0)
- Accept events within 3σ ellipse based on fit to SD MC
- Restricts analysis to $\xi \lesssim 0.03$

- Four-momentum transfer squared t- Reconstructed from $t = -p_T^2$ of proton in ALFA
- Fractional proton energy loss, $\xi = \frac{M_X^2}{s} = 1 \frac{E_p'}{E_p}$...
- Reconstructed from ID tracks in approximation $\sum_{i} (E_i \mp p_{z,i})$

$$\xi_{EP_z}^{\perp} = \frac{-\varepsilon(-v+1z,v)}{\sqrt{s}}$$

- Cross checked using reconstructed proton in ALFA
- (Visible) size of rapidity gap $\Delta \eta$ scalar between tracker edge on side with proton ($\eta = \pm 2.5$) and first ID track with p_T > 200 MeV

Acceptances / Fiducial Range (A3 MC)

- Lower limit in ξ determined by MBTS requirement

- Upper limit in ξ and range in t determined by ALFA acceptance

- Acceptance is a strong function of t due to ALFA geometry

Fiducial Region of Measurement

 $0.016 < |t| < 0.43 \text{ GeV}^2$ -4.0 < $\log_{10}(\xi) < -1.6$

(80 < Mx < 1270 GeV)

Backgrounds

- Single source physics backgrounds are small (largest is CD, while DD, ND negligible)

- Largest background is due to uncorrelated ALFA versus ID/MBTS activity due to pile-up or beam-induced ALFA signals \rightarrow `Overlay background'

- Data-driven model of Overlay Background, assessing ALFA activity in strongly ND-enriched events (all 32 MBTS segments have signals, tracks throughout ID η range). ... 1 proton in ALFA in 0.8% of such events \rightarrow Normalisation ... Shape in t from ALFA, shapes in ξ , $\Delta \eta$ from MC simulation

Control Region 1: for Overlay Background

- Same as nominal selection, except protons in exactly two ALFA armlets
 - Dominated by overlay of elastic scattering in ALFA and ND in the ID

- Good description of normalisation and shapes
- Systematic errors obtained from residual differences between data and model in this control sample
 13

Control Region 2: for CD Background

• Protons in exactly two ALFA armlets, 2 < #MBTS segments < 10

- Good description of normalisation and most shapes
- Reweight ξ to match ξ -ALFA distribution, preserving normalisation
- Systematic from either reweighting or not (& adjusting normalisation)

Uncorrected Distributions

- Poor description with default PYTHIA8 SD normalisation.
- Adjust SD total cross section to the result from this measurement (factor 0.64) ...

- Good desctiption of all distributions after renormalisation.

50

- ξ (ALFA) has very different background shapes and other systematics from ξ

Unfolding / Response Matrices

- t and $\Delta \eta$ are ~ diagonal
- ξ shows good correlation, but with shift $\xi_{EP_z}^{\pm} = \frac{\sum_i (E_i \mp p_{z,i})}{\sqrt{s}}$ due to missing neutrals and low pT / forward charged particles.

Response matrix for ξ after final linear recalibration factor

- Unfold with iterative Bayesian method (d'Agostini)

Systematic Uncertainty Sources

- Overlay background subtraction (from control region)
- Unfolding (residual non-closure when taking PYTHIA8 after reweight to match data, unfolded using un-reweighted MC)
- Hadronisation uncertainty (PYTHIA8 v HERWIG7)
- CD background shape (reweight or not) and norm (cf CDF data)
- ALFA alignment and reconstruction (follow elastics methods)
- Lumi (1.5%) MBTS thresholds (vary threshold)
- ID track reconstruction (follow n_{ch} analysis methods)
- Trigger efficiencies (vary reference sample)

Largest Uncertainties in each bin

- Overlay background dominates in many bins
- Hadronisation uncertainty significant for $\Delta\eta$
- Unfolding and CD normalisation also important in some regions

Results: Cross Section v Δη

- Gap defined by charged particles with $p_T > 200 MeV$, relative to $|\eta| = \pm 2.5$
- Diffractive plateau visible
- Shape at low gaps due to stacking up of high ξ events with small gaps beyond acceptance
- Shape at high gaps due to edge of ξ fiducial region
- $(\xi \sim 10^{-4} \text{ corresponds to } \Delta \eta \sim 4)$
- MC tunes predict a larger cross-section than the data (PYTHIA8 A3 *1.5, PYTHIA8 A2 *2.3, HERWIG7 *3)

Results: Cross Section v |t|

- Data consistent with
- expected exponential form

$$\frac{d\sigma}{dt} = A e^{Bt}$$

- B = 7.60 ± 0.23(stat.) ± 0.22(syst.) GeV⁻²
- Dominant uncertainty on fit result is overlay background and statistics (also arising from overlay background subtraction)

cf B(PYTHIA8 A2) = 7.82 GeV^{-2} , B(PYTHIA8 A3) = 7.10 GeV^{-2}

Broadly in line with expectations; high precision

Results: Cross Section v ξ

- Expected approximate $d\sigma/d\xi \propto 1/\xi$ dependence holds over two orders of magnitude in ξ
- Further interpreted in triple pomeron

model: $\frac{d\sigma_{SD}}{d\log_{10}(\xi)} \propto \left(\frac{1}{\xi}\right)^{\alpha(0)-1} \frac{1}{B} \left(e^{Bt_{\text{high}}} - e^{Bt_{\text{low}}}\right)$

where $B = B_0 - 2\alpha' \ln \xi$; fixed B_0 and $\alpha(t) = \alpha(0) + \alpha' t$

Fit yields:

 $\alpha(0) = 1.07 \pm 0.02(\text{stat.}) \pm 0.06(\text{syst.}) \pm 0.06(\alpha')$

- Dominant uncertainty comes from using α' = 0.25 ± 0.25 GeV⁻² in fit
- Unfolding, hadronisation & overlay background systematics also significant

cf in model above: PYTHIA8 A3 (DL): 1.14, PYTHIA8 A2 (SS): 1.00

21

Results: Cross Section v ξ

- Comparison of ATLAS data
 (extrapolated with factor 1.18 to cover
 full t range) with closest available
 published LHC data ... CMS rapidity gap
 measurement with strong veto
 on forward energy flow (CASTOR)
- CMS data still contain DD admixture (unquantified but assumed small) and are at 7 TeV rather than 8 TeV

Results: Integrated SD Cross Section

- Cross section integrated over fiducial region (0.016 < |t| < 0.43 GeV², -4.0 < $\log_{10} \xi$ < -1.6):

 $\sigma_{SD}(\xi, t \text{ fiducial}) = 1.59 \pm 0.13 \text{ mb}$

- Small extrapolation (factor 1.18) for $0 < |t| < 0.016 \text{ GeV}^2$ and 0.43 GeV² < $|t| < \infty$ yields integrated x-section for -4.0 < $\log_{10} \xi$ < -1.6: $\sigma_{SD}(\xi \text{ fiducial}) = 1.88 \pm 0.15 \text{ mb}$

"Total SD cross section" is ill defined (... e.g. up to which ξ?...)
 Extrapolation within context of PYTHIA model using average of A2 and A3 leads to:

$\sigma_{sD} = 6.6 \text{ mb}$	(no attempt	at evaluating	uncertainties)
--------------------------------	-------------	---------------	----------------

Distribution	$\sigma_{SD}^{\mathrm{fiducial}(\xi,t)}$ [mb]	$\sigma_{SD}^{t-\text{extrap}}$ [mb]	$\sigma_{SD}^{\xi,t-\text{extrap}}$ [mb]
Data	1.59 ± 0.13	1.88 ± 0.15	6.6
Pythia8 A2 (Schüler-Sjostrand)	3.69	4.35	12.48
Pythia8 A3 (Donnachie-Landshoff)	2.52	2.98	12.48
HERWIG7	4.96	6.11	24.0

Summary

- Measurement of SD differential cross sections with ALFA-tagged protons at 8TeV
- No previous such measurements published at LHC
- Dynamics (ξ and t dependences) broadly as expected in soft phenomenological models, including those in PYTHIA8
- Normalisations of commonly used MC models all exceed the data
- Significant scope to improve constraints on pomeron trajectory with double differential ξ , t data and s dependence

Calculating Triple Pomeron Amplitudes

Need to know triple pomeron coupling $g_{3IP}(t)$ and pomeron proton coupling $\beta_{pIP}(t)$.

Pomeron `propagators' give dependences on M_X^2 and s via pomeron trajectory $\alpha(t) \sim 1.08 + 0.25 t$

$$\frac{d\sigma}{dtdM_X^2} = \frac{1}{16\pi} g_{3IP}(t) \beta_{pIP}(t)^3 s^{2\alpha(t)-2} M_X^{2[\alpha(0)-2\alpha(t)]} \xrightarrow{t\to 0} s^{0.16} \left(\frac{1}{M_X^2}\right)^{1.08} e^{B(\xi)t}$$

Remaining Difficulties

- This theory works fairly well, but is not universally accepted

- The theory doesn't tell us where to stop at large $\xi,$ i.e. how to merge SD with ND cross sections

 \sqrt{s}

(GeV)

Pre-LHC Data

Ancient (ISR) triple Regge phenomenology of pp \rightarrow pX

Roberts & Roy: NP B77 (1974) 240 Field & Fox: NP B80 (1974) 367

- Sub-leading terms suppressed like 1/sqrt(s) or stronger ... negligible at LHC,
- Perhaps influence assumed 3IP coupling in MC models?

PHOJET Implementation

- Cross section based on triple pomeron model with standard pomeron $\alpha(0) = 1.08$
- Sharp cut at steerable large ξ [default ~0.4?]
- No low ξ enhancement

PYTHIA Implementation

- Triple pomeron model. By default $\alpha(0) = 1$ (!)
- Fudge factors applied to suppress large $\xi,$ give a low ξ enhancement and prevent X and Y systems overlapping in DD

$$\frac{\mathrm{d}\sigma_{\mathrm{sd}(AX)}(s)}{\mathrm{d}t\,\mathrm{d}M^2} = \frac{g_{3\mathbb{P}}}{16\pi}\,\beta_{A\mathbb{P}}^2\,\beta_{B\mathbb{P}}\,\frac{1}{M^2}\,\exp(B_{\mathrm{sd}(AX)}t)F_{\mathrm{sd}}$$
$$F_{\mathrm{sd}} = \left(1-\frac{M^2}{s}\right)\left(1+\frac{c_{\mathrm{res}}\,M_{\mathrm{res}}^2}{M_{\mathrm{res}}^2+M^2}\right)$$

- Exactly the same default in PYTHIA8, but now with 3 other parameterisations available 29

PYTHIA8 Pomeron Flux Models

- Default Schuler & Sjostrand flux and more standard(?) Donnachie & Landshoff show significantly different ξ dependences when viewed over huge ξ range at LHC

- It would be a good idea to look at sensitivity to this choice.

30

ALFA Reconstruction Efficiency

- Apply `tag and probe' method used in elastic scattering analysis, exploiting back-to-back configuration of EL events and redundancy of 2 pots per arm (& many fibre layers in each)

	LIU	L1L	R1U	R1L
$\epsilon_{ m rec}$				
Data:	0.9427	0.9123	0.9247	0.9179
MC:	0.9491	0.9177	0.9411	0.9391
Statistical uncertainty				
Data:	0.0009	0.0011	0.0010	0.0010
MC:	0.0007	0.0009	0.0008	0.0008
Systematic Uncertainty				
Data:	0.0086	0.0134	0.0092	0.0132
MC:	0.0102	0.0180	0.0081	0.0214
Total Uncertainty				
Data:	0.0086	0.0134	0.0093	0.0133
MC:	0.0103	0.0180	0.0082	0.0214

- Small inefficiencies (mainly due to showering) corrected for separately in data and MC

Armlet	$\epsilon^{ m data}/\epsilon^{ m MC}$
L1U	0.9933
L1L	0.9941
R1U	0.9826
R1L	0.9774

31