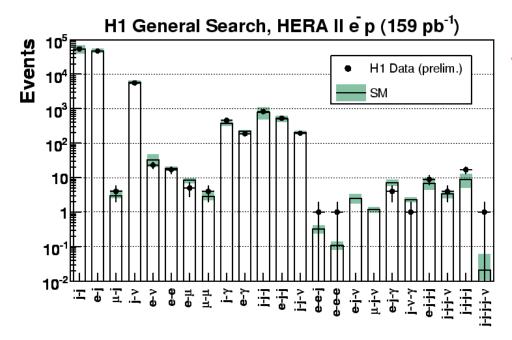
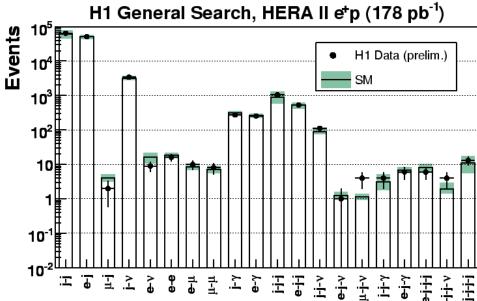
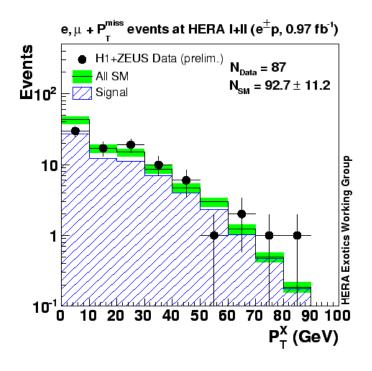

DIS after HERA? The LHeC Project

Paul Newman (University of Birmingham) IPPP Seminar 20 November 2008

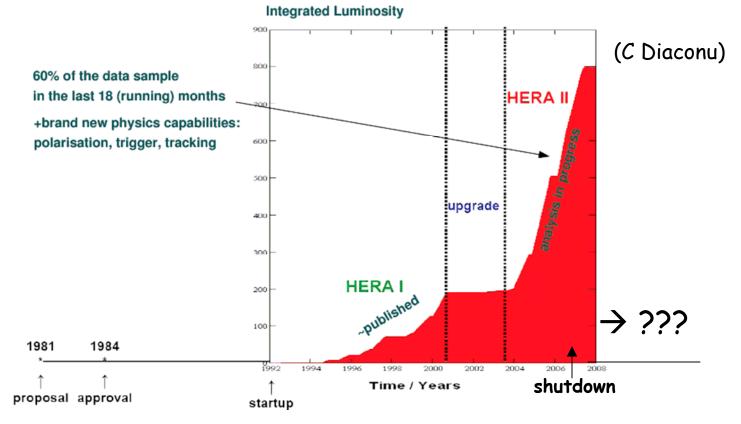

- · Where HERA leaves us
- Physics case for high luminosity TeV Scale DIS
- First Physics studies
- Accelerator & Detector



http://www.lhec.org.uk



Is HERA finished?



... perhaps yes for searches

- Combined HERA results clarify e.g. H1 isolated high pt leptons with missing pt
- · No really significant signals
- Detectors well understood!

A(nother) HERA Timeline

... very few publications on HERA-II so far!.. best still to come ... complicated final states take time (& experts) to analyse!

"UK physicists are still very much engaged in getting the most accurate data analysed and published on subjects of key importance for HERA, for QCD and in the preparation For the LHC. The projects require modest travel and common Fund support (mainly computing) in order to produce the final publications which capitalise on two decades of UK investment"

[Particle Physics Consultation Panel to STFC Programmatic Review:]

Can the unprecedented LHC energy and intensity be exploited for DIS?

"... the LHeC is already half built" [J Engelen]

"... it would be a waste not to exploit the 7TeV beams for ep and eA physics at some stage during the LHC time"
[G. Altarelli]

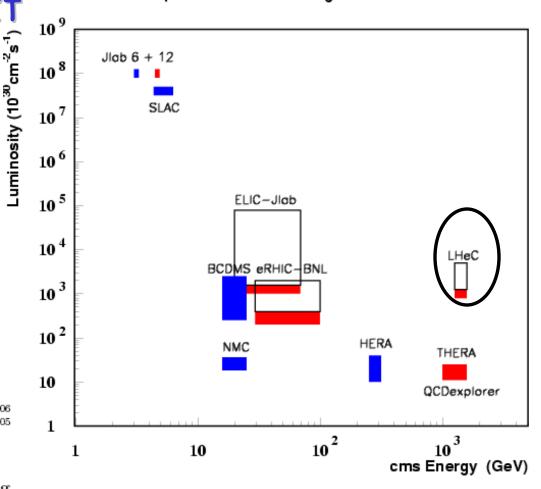
HERA-LHC Workshop ... (see also PDF4LHC)

<u>AIMS</u>

- Identify & prioritise HERA measurements needed for LHC
- Transfer of knowledge between HERA & LHC communities
- Establish ongoing interaction HERA & LHC communities
- Quantify implication of HERA results
- Develop new experimental / theoretical tools
- Encourage theory / phenomenology efforts

Some LHeC Context

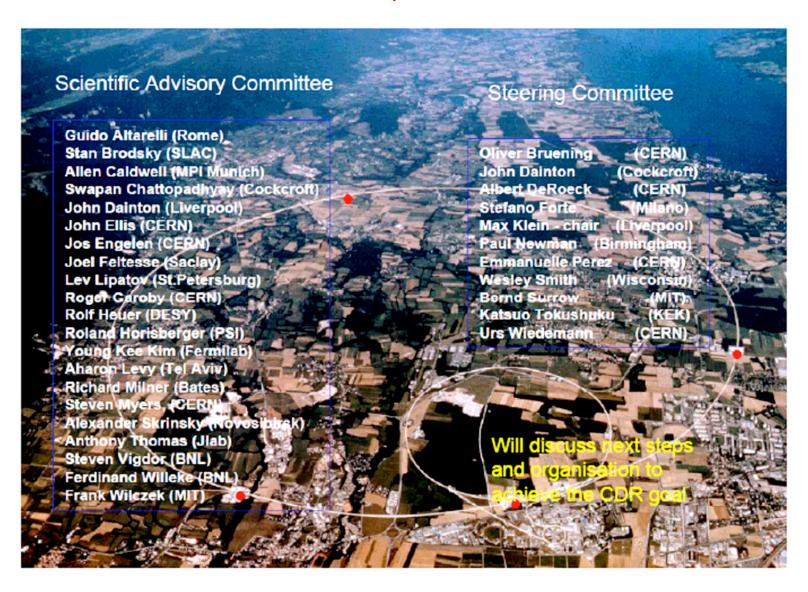
The LHeC is not the first proposal for higher energy DIS, but it is the first with the potential for significantly higher luminosity than HERA ...


DESY 06-006 Cockeroft-06-05

Deep Inelastic Electron-Nucleon Scattering at the LHC*

J. B. Dainton¹, M. Klein², P. Newman³, E. Perez⁴ F. Willeke

Cockcroft Institute of Accelerator Science and Technology,
 Daresbury International Science Park, UK
 DESY, Hamburg and Zeuthen, Germany
 School of Physics and Astronomy, University of Birmingham, UK
 CE Saclay, DSM/DAPNIA/Spp, Gif-sur-Yvette, France


Lepton-Proton Scattering Facilities

... achievable with a new electron accelerator at the LHC ...

[JINST 1 (2006) P10001]

Some committees were set up ...

... after further studies, discussions with CERN accelerator experts and a presentation to plenary ECFA (M Klein) ...

Summary and Proposal as endorsed by ECFA (30.11.2007)

As an add-on to the LHC, the LHeC delivers in excess of 1 TeV to the electron-quark cms system. It accesses high parton densities 'beyond' what is expected to be the unitarity limit. Its physics is thus fundamental and deserves to be further worked out, also with respect to the findings at the LHC and the final results of the Tevatron and of HERA.

First considerations of a ring-ring and a linac-ring accelerator layout lead to an unprecedented combination of energy and luminosity in lepton-hadron physics, exploiting the latest developments in accelerator and detector technology.

It is thus proposed to hold two workshops (2008 and 2009), under the auspices of ECFA and CERN, with the goal of having a Conceptual Design Report on the accelerator, the experiment and the physics. A Technical Design report will then follow if appropriate.

... Nuclear physics also took an interest ...

Electron-Proton/Ion Collider

- Options
 - Europe
 - LHeC
 - $\vec{e} + \vec{p}$ Collider @ FAIR
 - USA
 - ELIC @ JLab
 - · eRHIC @ BNL

- NuPECC working group
 - Tullio Bressani, Jens Jørgen Gaardhøje, G. Rosner (chair), H. Ströher
- Input to
 - NuPECC Report 2009
 - NuPECC's next Long Range Plan
 - Start preparation @ mtg. in Glasgow, Oct. 2008
 - Town meetings, working groups in 2009/10
 - Publication ~2010/11

... a working group structure agreed and convenors invited ...

First ECFA-CERN Workshop on the LHeC Divonne 1.-3.9.08

Accelerator Design [RR and LR]

Oliver Bruening (CERN),

John Dainton (Cl/Liverpool)

Interaction Region and Fwd/Bwd

Bernhard Holzer (DESY),

Uwe Schneeekloth (DESY),

Pierre van Mechelen (Antwerpen)

Detector Design

Peter Kostka (DESY),

Rainer Wallny (UCLA),

Alessandro Polini (Bologna)

New Physics at Large Scales

Emmanuelle Perez (CERN),

Georg Weiglein (Durham)

Precision QCD and Electroweak

Olaf Behnke (DESY),

Paolo Gambino (Torino),

Thomas Gehrmann (Zuerich)

Physics at High Parton Densities

Nestor Armesto (CERN),

Brian Cole (Columbia),

Paul Newman (B'ham),

Anna Stasto (MSU)

... first workshop took place in September 2008, Divonne ...

Believed in September 2008, Divonne ...

Monday 01 September 2008

Registration - Hall d'accueil (12:30-14:00)

Agenda of Divonne Workshop

Opening - Amphitheatre (14:00-16:30)

- Conveners: Ellis, John

time [id] title	presenter
14:00 [0] Welcome Address	ENGELEN, Jos
14:15 [1] Opening Remarks from ECFA	MEIER, Karlheinz
14:30 [4] Opening Remarks from NuPBCC	ROSNER, Guenther
14:45 [2] Opening Lecture - "Deep Inelantic Scattering in the LHC time"	ALTARELLI, Guido
15:45 [3] Steering Group Report	KLEIN, Max

Accelerator Overview - Autone (17:00-19:05)

time [id] title	presenter
17:00 [41] Discussion	
17.45 [37] Boundary conditions for the Interaction Region design	SCHNEEKLOTH, Uwe
18:15 [38] Interaction Region design for a ring-ring option	HOLZER, Bembard
18.40 [39] Interaction Region design for a ring-linac option	TOMAS, Regelio

Physics Overview - Barbilaine (17:00-19:00)

	time	[id] title	presenter
	17:00	[9] LHeC Physics Overview	BRODSKY, Stan
1	18:00	[10] QCD in the High Energy Limit	BARTELS, Jochen

Tuesday 02 September 2008

Accelerator & IR Design - Autone (09:00-12:00)

time	[id] title	presenter
09:00	[40] Ring-Linac option: various operation modes and performance reaches	ZIMMERMANN, Frank
09:30	[42] Magnet design issues and options for an LHeC Interaction Region	RUSSENSCHUCK, Stephen
10:00	[43] Operation with large crossing angles and the required CRAB cavity parameters	CALAGA, Rams
10:30	ooffee bresk	
11.00	[44] Summary of the main parameters for the ring-ring option	JOWETT, John
11:30	[45] Ring-ring layout and bypass design	BURKHARDT, Helmut

Detector Design - Barbilaine (09:00-12:00)

time [id] title	presenter
06:00 [62] Introduction and sension organization	POLINI, Alessandro KOSTKA, Peter WALLNY, Rainer
09:15 [63] Silson Pixel detectors for Tracking	WERMES, Norbert
10:00 [64] RD50 and nilicon radiation hardness	MOLL, Michael
10:30 coffee break	
11:00 [65] Present & Future Collider Triggers	SMOTH, Wesley
11:20 [66] Trigger and displaced vertexing (CDF SVT)	CERRI, Alessandro
11:40 [67] The CMS Hadron Calorimeter and upgrade scenarios	SKUIA, Andris

QCD and Low x ep Observables and PDF; - Amphitheatre (09:00-12:00)

time [id] title	presenter
09:00 [11] Precision Physics with Parton Distributions	VOOT, Andreas
92:30 [12] Structure Functions and PDFs st/from LHeC	KLEDS, Mass
09:50 [13] Neural network approach to parton distributions	ROZO-CHACON, Just
10.10 [14] Expectations for slpha_s	KLUGE, Thomas
0.30 coffe bresk	
11.00 [15] Heavy Flavour and Set Observables at the LHeC	BEHNKE, Old
11:20 [17] More Low-x Observables at the LHeC	NEWMAN, Paul
11:40 [16] Forward Jeta/Purton Cascade Dynamics at LHeC (the)	EDVG, Harmen

Accelerator & IR & Detector - Autone (14:00-16:00)

time.	[id] title	presenter
14:00	[49] Active magnets	GREENSHAW, Tim
14:20	[48] Magnet Options for LHeC detector	TEN KATE, Hermon
14:40	[46] e-RHIC machine supects	LITVINENKO, Vladimir
16/30	CXC Biops -> h bbsr Counting at 1 BC	YOAY Sun Ann
	[26] Higgs -> b libar Coupling at LHC [80] Higgs cross sections at LHeC	KOAY, Suz Ann KLEIN, Uta
16:50		
16:50 17:10	[80] Higgs cross sections at LHeC	KLEIN, Uta

Low z ep and eA Physics at LHC and LHeC - Barbilaine (16:30-19:00)

time [id] title	presenter
16:30 [32] Low x QCD with protons and nuclei at LHC	D'ENTERRIA, David
16:50 [33] What to expect on low x from ATLAS	CAMPANELLI, Mario
17:10 [34] From ep to AB Collisions	ARMESTO, Nestor
17:30 [36] Prompt photons as a tool for section POEs	ARLEO, Francois
17:50 [35] Concluding discussion and plans on low x	

15:00 [47] IR Design for the e-RHIC project	MONTAG, Christoph
15:20 [50] IR Design proton optics	HOLZER, Bembard
15:40 (SILIR Design: electron optios	XLING Alexander

New Physics at the LHeC - Barbilaine (14:00-16:01)

time [id] title	precenter
14:00 [18] Introduction	PEREZ, Emmanuelle
14.30 [19] Excited Fermiona	TRINH, Nguyet
15:00 [20] Single Leptoquick Production in pp	PAPADOPOULOU, Theodore
15.30 [30] Single Top Production	BRANDT, Gerhard

Parton Saturation at the LHeC - theory and experiment - Amphitheatre (14:00-16:00)

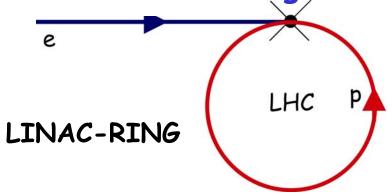
time	[id] title	presenter
14:00	[21] Okon density in BFKL DAF-Pomeron at HERA and its implication for LHC and LHeC	KOWALSKI, Henri
14:20	[22] Sistantion effects in final states and total cross sections due to CCFM with schoolstive boundary	KUTAK, Krzysztof
14:40	[23] 5D tiny black holes and perturbative saturation	SABIO VERA, Agustin
15:00	[24] Establishing/falsifying saturation at LHeC	ROJO-CHACON, Just
15:20	[25] Batablishing/fishifying parton saturation in low x ep at LHoC	NEWMAN, Paul

Accelerator & IR Design - Autone (16:30-19:00)

time	[id] title	presenter
16:30	[74] Space requirements for earlities, Klystrons and power converters in the LHC turnel/bypass areas	LINNECAR, Trever
16:50	[75] Synergies of the required LHeC R efforts with other existing projects	NN
17:10	[76] Polarisation	BARBER, Deamond
17:30	[77] Double Quad Design	PAOLONI, Eugenio BETTONI, Simona
17:50	[78] Synchrotron Light	NAGORNY, Boris
18:10	[79] Discussion	

Detector design - Fover des artistes (16:30-19:00)

time [id] title	presenter	
16:30 [71] Gossip gazerus pixel detector R&D	KOFFEMAN, Eb	
17:00 [72] CALICE calorimenters for the ILC	SIMON, Frank	
17:30 [73] Detector Design WG open discussion	NN	

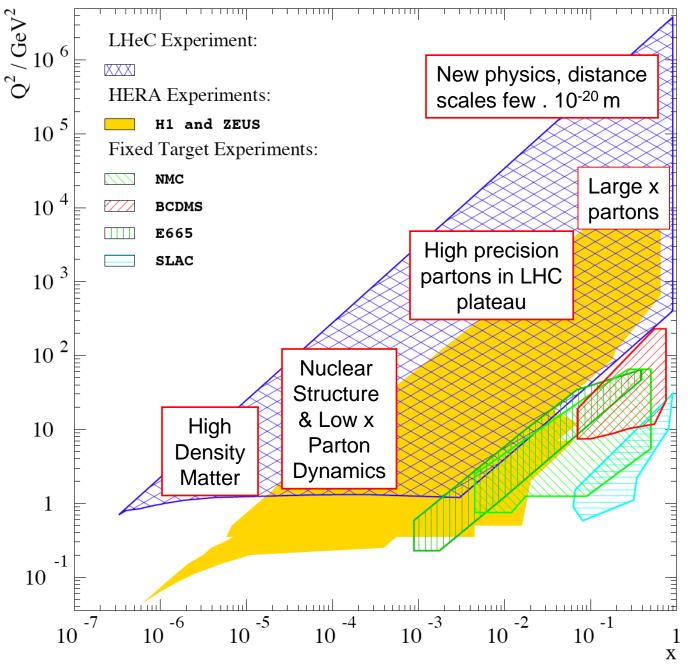

Wednesday 03 September 2008

Reports from Working Groups - Amphitheatre (09:00-12:30)

time	[id] title	presenter
09:00	[56] Physics at High Parton Densities (ep and eA)	ARMESTO, Néstor NEWMAN, Paul
09:30	[57] Precision Investigations of QCD and Electroweak Interactions	BEHNKE, Olaf
10:00	[58] New Physics at Large Scales	WEIGLEIN, Georg
10:30	coffee bresk	
11:00	[59] Detector Design	POLINI, Alexandro WALLNY, Rainer KOSTKA, Peter
11:30	[60] Interaction region and Forward/Backward Detectors	HOLZER, Bernhard
12:00	[61] Accelerator Design	BRUNING, Oliver

How Could ep be Done using LHC?

... whilst allowing simultaneous ep and pp running ...



- Previously considered as `QCD explorer' (also THERA)
- Reconsideration (Chattopadhyay, Zimmermann et al.) recently
- Main advantages: low interference with LHC, $E_e \rightarrow 140~\text{GeV}$ ++, LC relation
- Main difficulties: lower luminosity ~0.5.10³² cm⁻² s⁻¹ (?) at reasonable power, no previous experience exists

- First considered (as LEPxLHC) in 1984 ECFA workshop
- Recent detailed re-evaluation with new e ring (Willeke)
- Main advantage: high peak lumi obtainable (10³³ cm⁻² s⁻¹)
- Main difficulties: building round existing LHC, synchrtoron limits e beam energy (70GeV) and lifetime

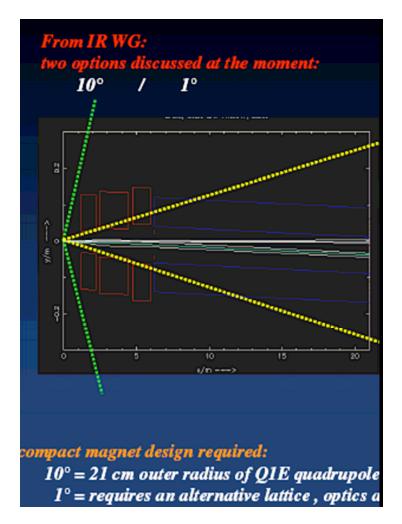
Kinematics & Motivation (70 GeV x 7 TeV ep)

$$\sqrt{s} = 1.4 \text{ TeV}$$

- High mass (M_{eq},
 Q²) frontier
- · EW & Higgs
- Q^2 lever-arm at moderate & high $x \rightarrow PDFs$
- Low x frontier→ novel QCD ...

$$x \ge 5.10^{-7} \text{ at}$$

$$Q^2 \le 1 \text{ GeV}^2$$


The Luminosity v Acceptance Conundrum

 \bullet As for HERA-I v HERA-II, low β focusing quadrupoles around interaction region can improve lumi by a factor ~10

· However, acceptance near beam-pipe is compromised

- → loss of high M acceptance
- → poorer HFS measurements

A Working Scenario for First Physics Studies

Assume a 70 GeV electron beam and lumi of 1-10 fb⁻¹ / year Requirements to reach a per-mil α_s (c.f. 1-2% now) ...

The new collider ...

- should be ~100 times more luminous than HERA The new detector
 - should be at least 2 times better than H1 / ZEUS

```
Lumi = 10^{33} cm<sup>-2</sup> s<sup>-1</sup> (HERA 1-5 x 10^{31} cm<sup>-2</sup> s<sup>-1</sup>)

Acceptance 10\text{-}170^{\circ} (\rightarrow 179^{\circ}?) (HERA 7-177°)

Tracking to 0.1 mrad (HERA 0.2 – 1 mrad)

EM Calorimetry to 0.1% (HERA 0.2-0.5%)

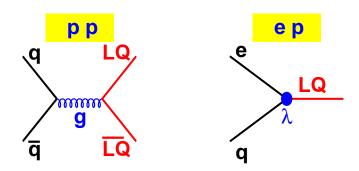
Had calorimtry to 0.5% (HERA 1%)

Luminosity to 0.5% (HERA 1%)
```

First `pseudo-data' for F_2 , F_L , F_2^D produced on this basis ...

Working Group on New Physics at High Scales

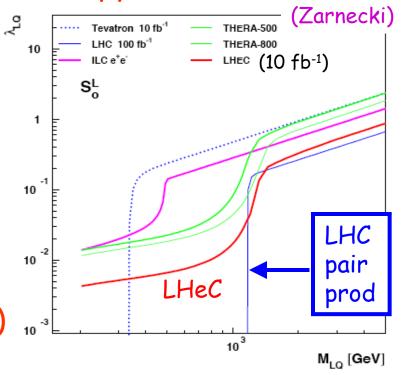
New physics at large scales: what is the physics potential of LHeC?


[Weiglein]

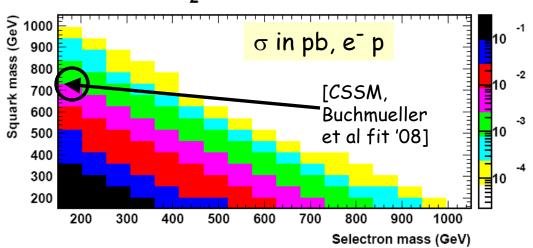
- Is there potential for new physics studies beyond the eeqq contact interaction (see G. Altarelli's talk)?
- Can new physics be observed at the LHeC that did not show up at the LHC?
- If not, can LHeC + LHC measurements yield added value compared to LHC alone?

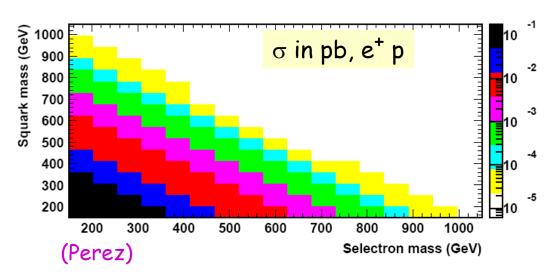
... LHeC may have competitive sensitivity to LHC in BSM areas where HERA was also strong compared with Tevatron ...

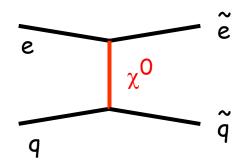
Lepton-quark Bound States


• Leptoquarks appear in many extensions to SM... explain apparent symmetry between lepton and quark sectors.

Scalar or Vector color triplet bosons carrying
 L, B and fractional Q, complex spectroscopy?

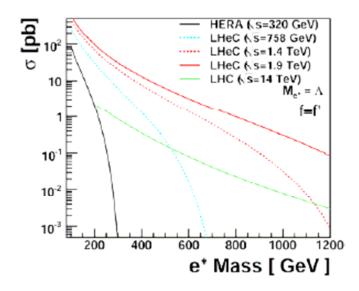

Yukawa coupling, λ

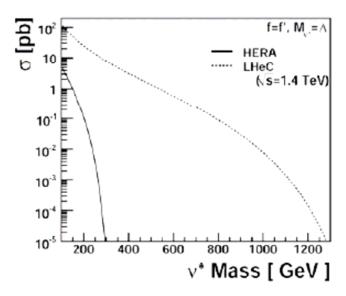

- (Mostly) pair produced in pp, single production in ep.
- LHeC sensitivity (to ~1.5 TeV) similar to LHC, but can determine quantum numbers / spectroscopy (fermion #, spin, chiral couplings ...)



Rp Conserving Supersymmetry

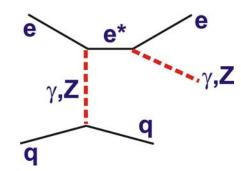
tan β = 10, M₂ = 380 GeV, μ = -500 GeV

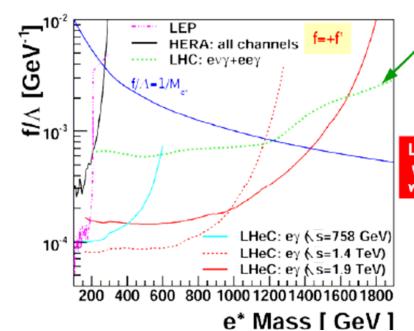



Pair production via t-channel exchange of a neutralino.

Cross-section sizeable for $\Sigma M < 1$ TeV i.e. if squarks are "light", could observe selectrons up to ~ 500 GeV, a little beyond LHC?

• Total cross section for I* productions through GM interaction at LHeC, assuming M*=A


comparison with HERA and LHC



Excited Leptons

[Trinh]

LHeC gives best sensitivity in this scenario ...

Phys. Rev D 65 (2002) 075003]

LHeC sensitivity, with L=10 fb⁻¹ for Ee=70/20 GeV with L=1 fb⁻¹ for Ee=140 GeV

Precision Electroweak and QCD Group

Electroweak & QCD Wishlist for LheC

WW-> Higgs

Precise electroweak couplings aq.vq

alpha_s @ ~1% precision

w/d for x --> 1

g(x) for x>0.1

[Behnke]

intrinsic c,b,t x>0.1? Effective b-density at x=0.01

XF3 valence quarks down to small x

Direct s(x)

Precise Fl and g(x) at low x

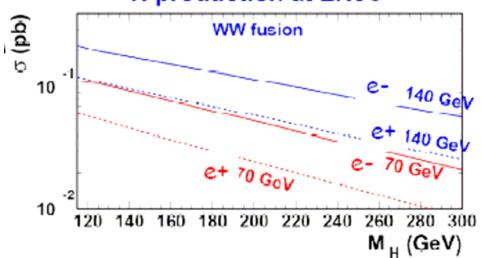
+ much much many more ...

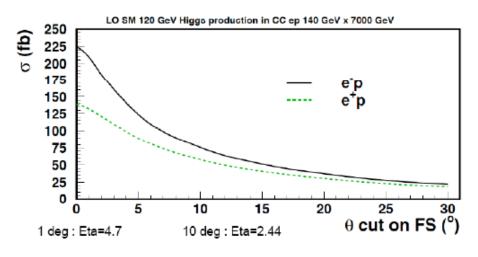
Another version of the wish list ...

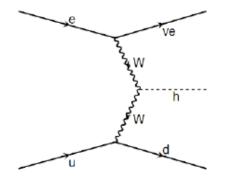
Novel Aspects of QCD in ep scattering

- Clash of DGLAP and BFKL with unitarity: saturation phenomena; off-shell effects at high x
- Heavy quark distributions do not derive exclusively from DGLAP or gluon splitting -- component intrinsic to hadron wavefunction: Intrinsic c(x,Q), b(x,Q), t(x,Q);
- Hidden-Color of Nuclear Wavefunction
- Antishadowing is quark specific!
- Polarized u(x) and d(x) at large x; duality
- Virtual Compton scattering: DVCS, DVMS, GPDs; J=o fixed pole reflects elementary source of electromagnetic current
- Initial-and Final-State Interactions: leading twist SSA, DDIS
- Direct Higher-Twist Processes; Color Transparency

ECFA-CERN LHeC Workshop Divonne, September 1, 2008


LHeC Physics Overview


... some examples follow ...

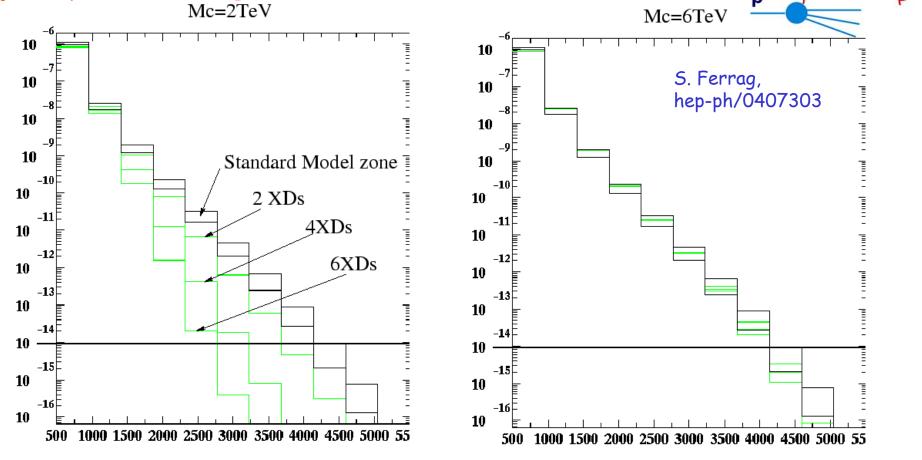

Higgs Production

H production at LHeC

· Apply eta cuts on ALL final states

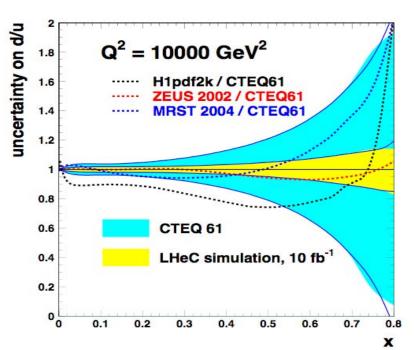
[U Klein, Kniehl, Perez, Khuze]

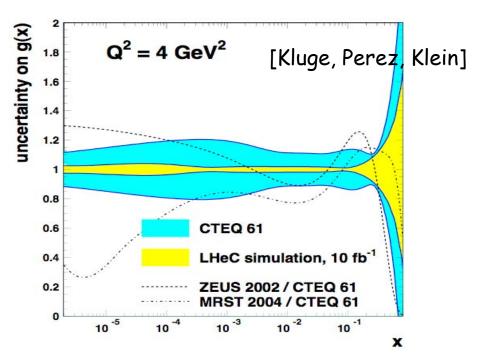
Sizeable CC (WW) x-section (NC factor ~5 smaller)


- → Novel production mechanism
- \rightarrow Clean(ish) ... H + j + p₊miss
- → bbbar coupling to light H?

Acceptance is an issue ...

First background studies (jets in CC) underway ...


High x Partons Limiting LHC Searches


Some BSM scenarios give deviations in high mass dijet spectra ... e.g. a model with extra dimensions

 \dots in this example, high x PDF uncertainties reduce sensitivity to compactification scales from 6 TeV to 2 TeV for 2XDs

LHeC Impact on High x Partons and α_s

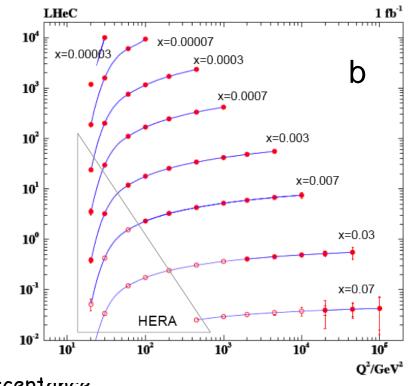
Full NC/CC sim (with systs giving per mil α_s) & NLO DGLAP fit using standard HERA technology...

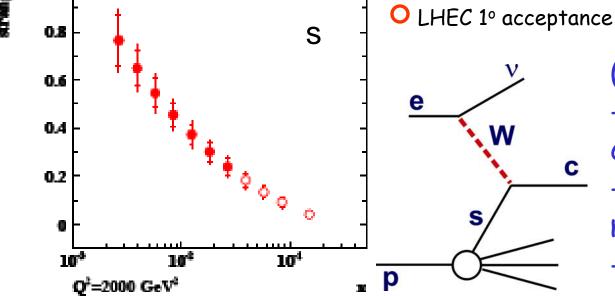
... full flavour decomposition possible

... high x pdfs \rightarrow may help clarify LHC discoveries through interpretation of new states?

[Some of highest x improvement from paramⁿ extrapolation]

Flavour Decomposition


High precision c, b measurements (modern Si trackers, beam spot 15 * 35 μ m², increased HF rates at higher scales).


Systematics at 10% level

 \rightarrow beauty is a low x observable!

→s (& sbar) from charged current

 \rightarrow Similarly Wb \rightarrow †?

LHeC 10° acceptance

(Assumes 1 fb⁻¹ and - 50% beauty, 10% charm efficiency - 1% uds → c

[Mehta, Klein]

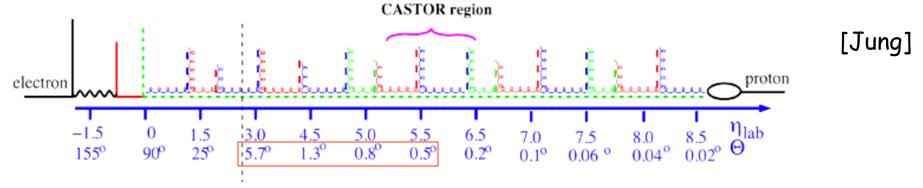
- 1% uas → c mistag probability.

- $10\% c \rightarrow b mistag$)

LHeC Kinematics for Low x Investigations

Access to Q2=1 GeV2 LHeC - Low x Kinematics for all $x > 5 \times 10^{-7}$ IF we have 10² acceptance E_P=7000 GeV to 179° E_=70 GeV E**,**'=63GeV \rightarrow Without low β HERA 10 quads $\sim 1 \text{ fb}^{-1} / \text{yr}$... definitive low x facility (parton saturation ?...) xG(x)=dN/dyTURATION **BFKL** 10^{-6} REGGE DATA

More Low x Detector Considerations

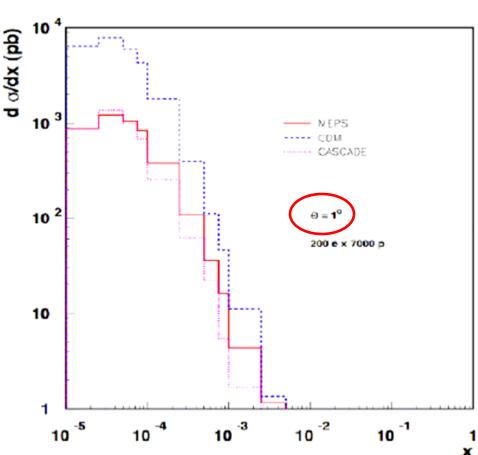

· Low x studies require electron acceptance to 1° to beampipe

HERA
$$E_e=30$$
GeV $E_p=920$ GeV

LHeC $E_e=70$ GeV $E_p=7000$ GeV

- Considerably more asymmetric beam energies than HERA!
 - Hadronic final state at newly accessed lowest x values goes central or backward in the detector \odot
 - At x values typical of HERA (but larger Q^2), hadronic final state is boosted more in the forward direction.
- Study of low x / Q^2 and of range overlapping with HERA, with sensitivity to energy flow in outgoing proton direction requires forward acceptance for hadrons to $\sim 1^{\circ}$

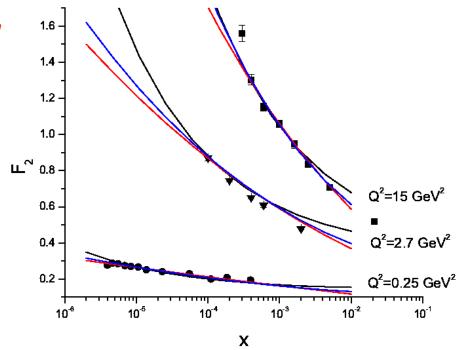
Forward Instrumentation and Jets


DIS and forward jet:

$$x_{jet} > 0.03$$

$$0.5 < rac{p_{t \, j \, et}^2}{O^2} < 2$$

x range (and sensitivity to novel QCD effects) strongly depend on $\boldsymbol{\theta}$ cut

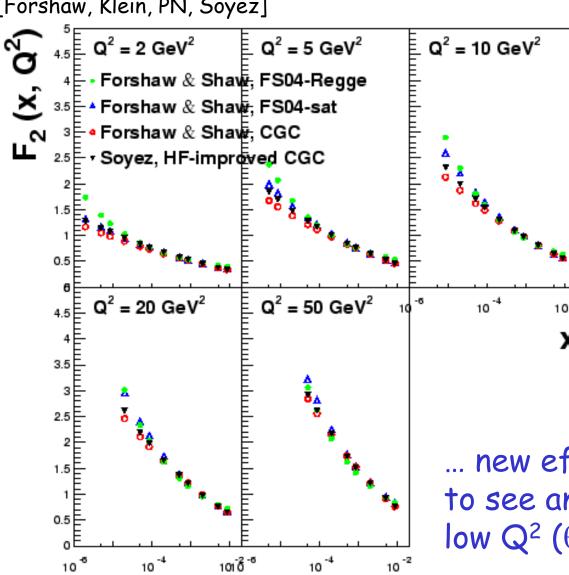

Similar conclusions for $\Delta \phi$ decorrelations between jets

Parton Saturation after HERA?

e.g. Forshaw, Sandapen, Shaw hep-ph/0411337,0608161 ... used for illustrations here

Fit inclusive HERA data using dipole models with and without parton saturation effects

FS04 Regge (~FKS): 2 pomeron model, <u>no saturation</u>
FS04 Satn: <u>Simple implementation of saturation</u>


CGC: <u>Colour Glass Condensate version of saturation</u>

- All three models can describe data with $Q^2 > 1 \text{GeV}^2$, x < 0.01
- Only versions with saturation work for $0.045 < Q^2 < 1 \text{ GeV}^2$... any saturation at HERA not easily interpreted partonically

Some models of low $x F_2$ with LHeC Data

With 1 fb⁻¹ (1 year at 10^{33} cm⁻² s⁻¹), 1° detector: stat. precision < 0.1%, syst, 1-3%

[Forshaw, Klein, PN, Soyez]

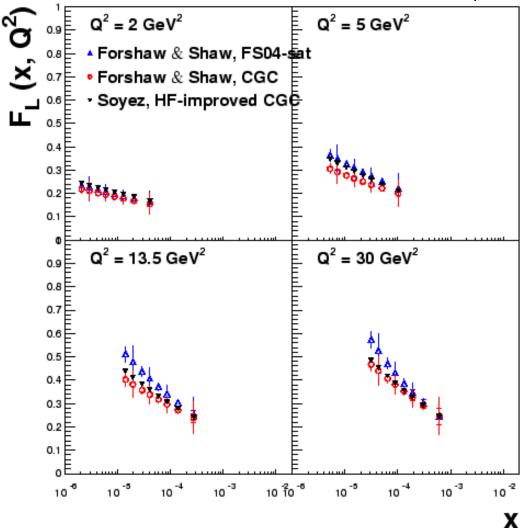
Precise data in LHeC region, $x > \sim 10^{-6}$

- Extrapolated HERA dipole models ...
- FS04, CGC models including saturation suppressed at low x & Q² relative to non-sat FS04-Regge

... new effects may not be easy to see and will certainly need low Q^2 ($\theta \rightarrow 179^{\circ}$) region ...

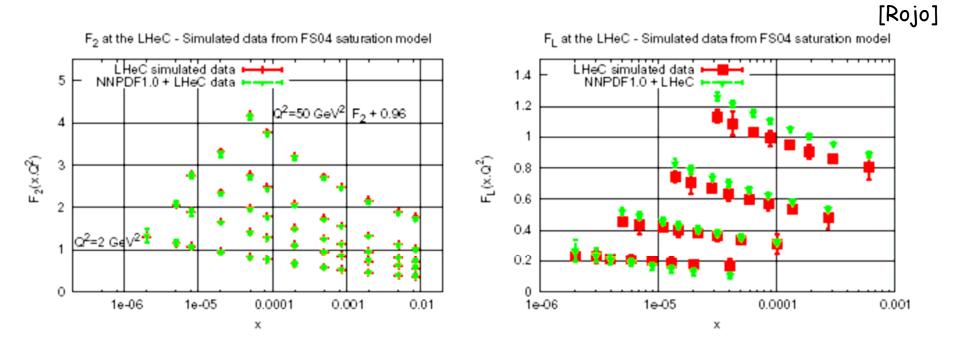
FL Simulation

Vary proton beam energy as recently done at HERA?...


→ example for 1 year ...

E_p (TeV)	Lumi (fb ⁻¹)
7	1
4	0.8
2	0.2
1	0.05
[0.45	0.01]

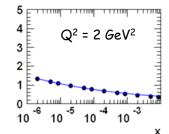
... precision typically 5% ... stats limited for $Q^2 > 1000 \text{ GeV}^2$

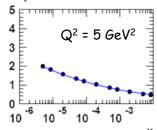

... sample lowest x data Compared with 3 dipole models including saturation ...

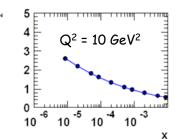
[Forshaw, Klein, PN, Soyez]

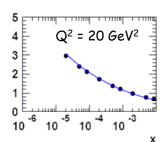
Can Parton Saturation be Established @ LHeC?

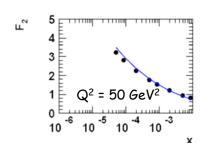
... effects may not be so large in ep \rightarrow and may be hard to establish unambiguously with F_2 alone ... $A^{1/3}$ amplification in gluon in eA (~6 for Pb) may be needed ... Two first studies using F_2 and F_1 in ep only ...

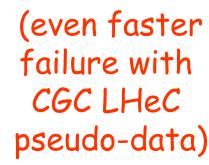

Saturation effects at LHeC (FS04-sat) cannot be absorbed into NNPDF1.0 DGLAP PDF analysis if F_2 and F_L both fitted

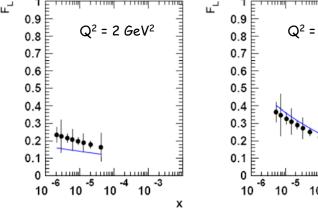

Can DGLAP adjust to fit LHeC sat models?

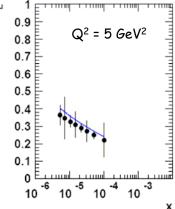

[Forshaw, Klein, PN, Perez]


- · Attempt to fit ZEUS and LHeC saturation model data in increasingly narrow (low) Q2 region until good fit obtained
- Use dipole-like (GBW) gluon parameterisation at Q_0^2

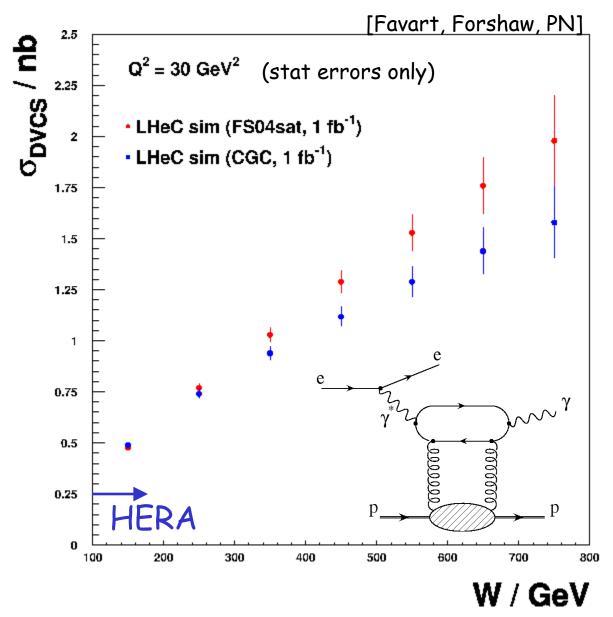








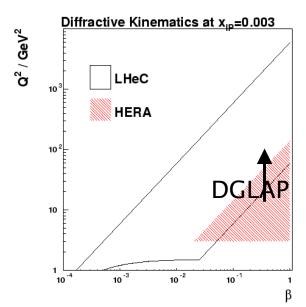
$$xg(x,Q_0^2) = A_g \left(1 - \exp\left[-B_g \log^2 \left(\frac{x}{x_0} \right)^{\lambda} \right] \right) (1-x)^{C_g}$$

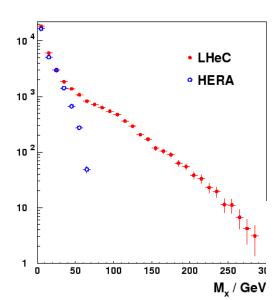

- · Fitting F2 only, a good fit cannot be obtained beyond the range $2 < Q^2 < 20 \text{ GeV}^2$
- This fit fails to describe F₁

FS04 dataset, FL

DVCS at LHeC

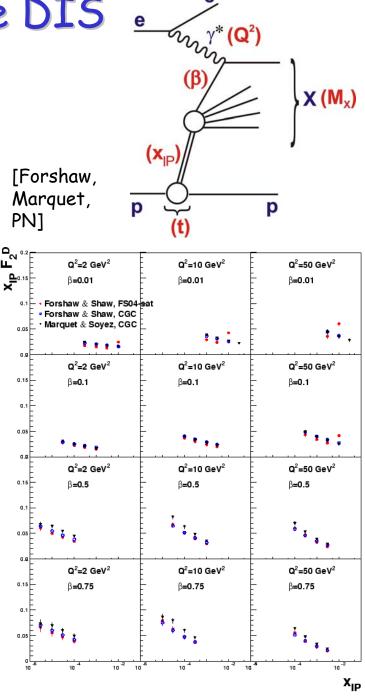
(1° acceptance)

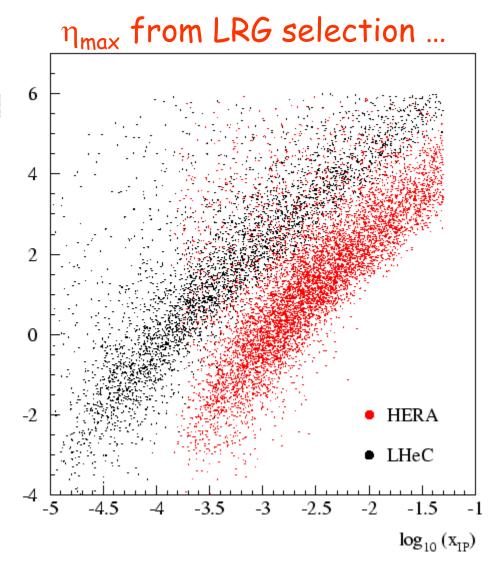

Statistical precision with 1fb⁻¹ ~ 2-11%


With F₂, F_L, could help establish saturation and distinguish between different models which contain it?

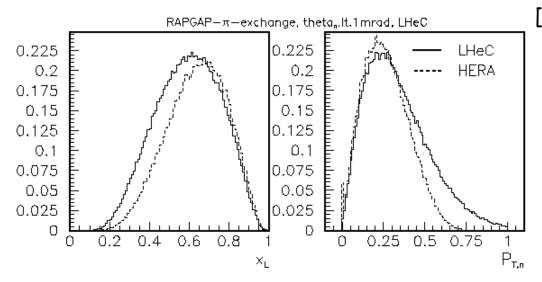
Cleaner interpretation in terms of GPDs at larger LHeC Q² values

VMs similar story?...
No work done so far 🕾


(Semi)-Inclusive Diffractive DIS

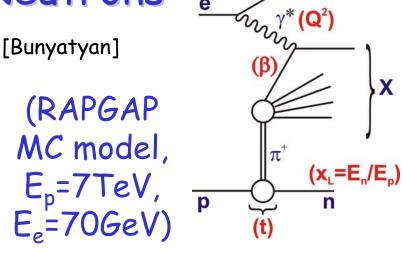


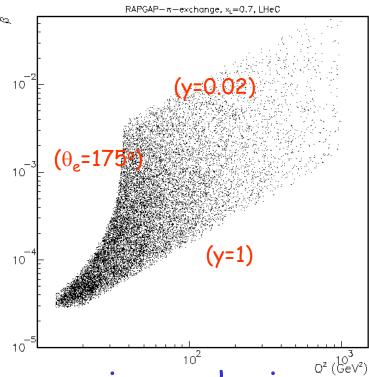
- ·5-10% data, depending on detector
- (D)PDFs / fac'n in much bigger range
- Enhanced parton satn sensitivity?
- $Mx \rightarrow 100 \text{ GeV}$ with $x_{IP} = 0.01 \dots$ $\rightarrow X$ including W, Z, b ...
- Exclusive production of any 1- state



Forward and Diffractive Detectors

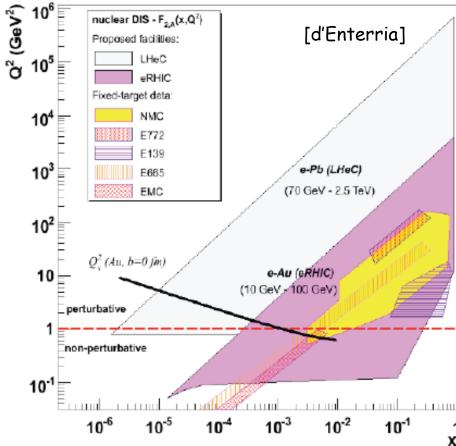
- Very forward tracking / calorimetry with good resolution ...
- Proton and neutron spectrometers ...
- Reaching $x_{\text{IP}} = 1 E_p'/E_p$ = 0.01 in diffraction with rapidity gap method requires η_{max} cut around 5 ...forward instrumentation essential!
- Roman pots, FNC should clearly be an integral part.
 - Also for t measurements
 - Not new at LHC ©
 - Being considered integrally with interaction region




π Structure with Leading Neutrons

• With θ_n < 1 mrad, similar x_L and p_t ranges to HERA (a bit more p_t lever-arm for π flux).

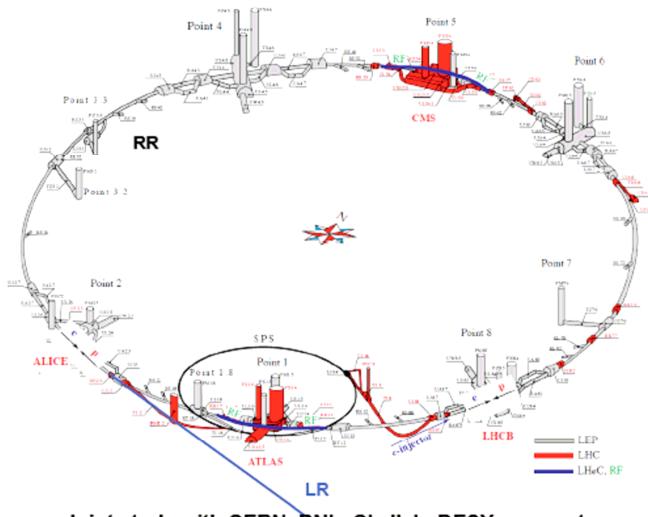
• Extentions to lower β and higher Q² as in leading proton case. \rightarrow F₂^{π} At β <5.10⁻⁵ (cf HERA reaches β ~10⁻³)



Also relevant to absorptive corrections, cosmic ray physics ...

With AA at LHC, LHeC is also an eA Collider

- Very limited x and Q^2 range so far (unknown for x <~ 10^{-2} , gluon very poorly constrained)
- LHeC extends kinematic range
- by 3-4 orders of magnitude



... opportunity to extract and understand nuclear parton densities in detail ...

- $\rightarrow \sim A^{1/3}$ enhanced gluon density \rightarrow additional satⁿ sensitivity
- → initial state in AA quark-gluon plasma studies @ LHC / RHIC
- > relations between diffraction and shadowing
- → Neutron structure & singlet PDF evolution from deuterons

Machine Considerations and Studies

high E_{e,p,A}, e[±] polarised, high Luminosity

Joint study with CERN, BNL, CI, Jlab, DESY, .. experts

Max Klein LHeC ICFA08

generalities

simultaneous ep and pp

power limit set to 100MW

IR at 2 or 8

p/A:

SLHC - high intensity p (LPA/50ns or ESP/25ns)

lons: via PS2 new source for deuterons

e Ring:

bypasses: 1 and 5 [use also for rf]

injector: SPL, or dedicated

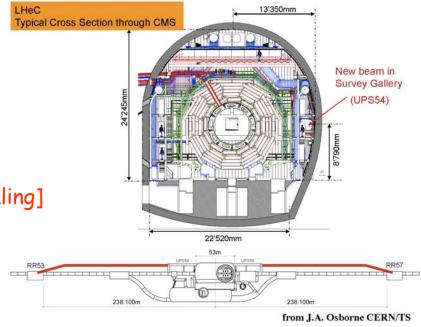
e LINAC:

limited to ~6km (Rhone) for IP2, longer for IP8 CLIC/ILC tunnel.?

Accelerator Group Summary

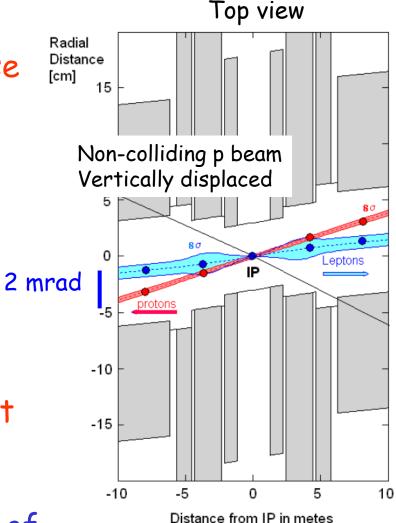
[Bruening]

"The discussions at this workshop showed that both options can in principle provide collisions at the TeV scale (e.g. collisions between 60 GeV lepton and 7 TeV proton beams) with a luminosity of $L = 10^{33}$ cm⁻² sec⁻² in a parasitic mode to the nominal p-p program."


"The devil lies often in the details and insurmountable problems might only become visible during detailed studies."

→ "Need to sketch both options for the LHeC in the conceptual design report"

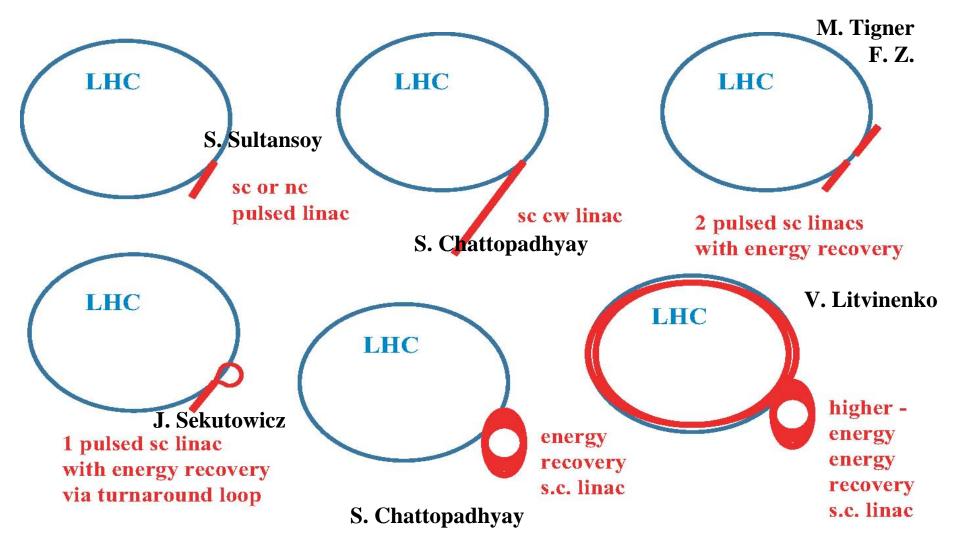
Ring-Ring


"We have a lot of experience with the design of such a machine (LEP, HERA) and sophisticated tools are at hand for design & performance analysis" [Jowett, Kling]

"By-passes require a minimum of 1.5km tunnelling in the LHC" [Burkhard]

Ring-Ring Interaction Region Overview

- LHC fixes p beam parameters
- 70 GeV electron beam, (compromise energy v synchrotron → 50 MW)
- Match e & p beam shapes, sizes
- Fast separation of beams with tolerable synchrotron power requires finite crossing angle
- \cdot 2 mrad angle gives 8σ separation at first parasitic crossing



[Willeke]

... <u>Linac-Ring</u> could get around some of this ... and focusing quadrupoles could be further from IP?

Thoughts on Linac-Ring Layout Designs

[Zimmermann]

... lots of R&D required ...

Another idea: electrons in the SPL?

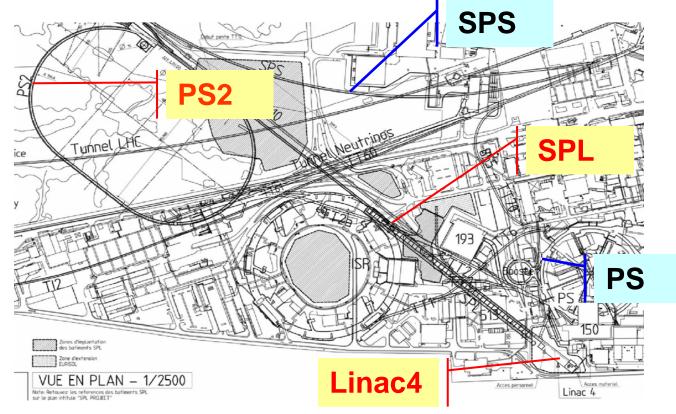
SPL (Superconducting Proton Linac) is part of proposed

CERN p-accelerator upgrade programme.

... could be used to provide up to

20 GeV electrons (4 passes of 5 GeV)

PS₂


SPS+

DLHC

SPS

LHC /

SLHC

R. Garoby, CARE-HHH BEAM07, October'07; L. Evans, LHCC, 20 Feb '08

First Detector Concepts

Muon chambers (fwd,bwd,central)

Coil (r=3m l=8.5m, 2T)

[Return Fe not drawn]

Central Detector

Hadronic Calo (Fe/LAr) El.magn. Calo (Pb,Sc) GOSSIP (fwd+central)

[Gas on Slimmed Si Pixels]
[0.6m radius for 0.05% * pt in 2T field]
PixelS

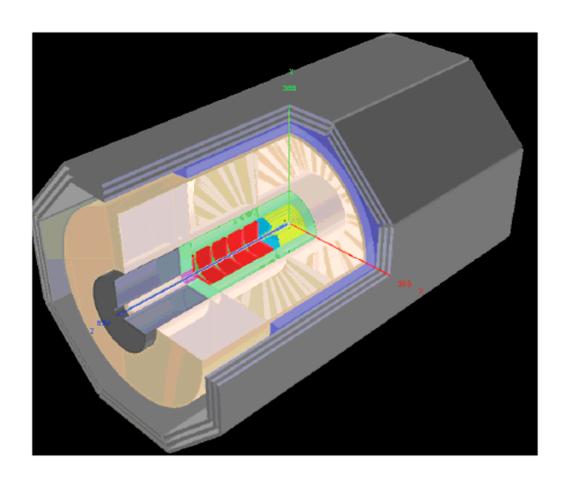
Elliptic beam pipe (~3cm)

Fwd Spectrometer (down to 1°)

Tracker

Calice (W/Si)

FwdHadrCalo


Bwd Spectrometer (down to 179°)

Tracker

Spacal (elm, hadr)

Max Klein LHeC ICFA08

L1 Detector: version for low x Physics

To be extended further in fwd direction. Tag p,n,d. Also e,y (bwd)

First Detector Concepts

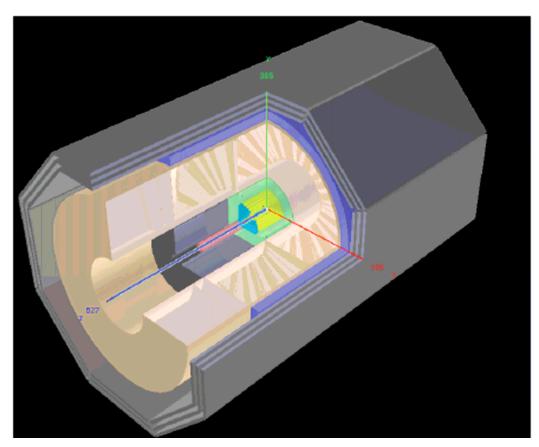
Muon chambers (fwd,bwd,central)

Coil (r=3m l=8.5m, 2T)

Central Detector

Hadronic Calo (Fe/LAr) El.magn. Calo (Pb,Sc) GOSSIP (fwd+central)

Pixels
Elliptic pipe (~3cm)


Fwd Calorimeter (down to 10°)

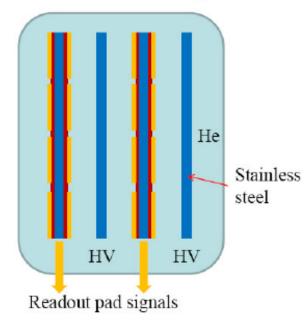
Lepton low β magnets FwdHadrCalo

Bwd Spectrometer (down to 170°)

Lepton low β magnets Spacal (elm, hadr)

L1 Detector: version for hiQ2 Physics

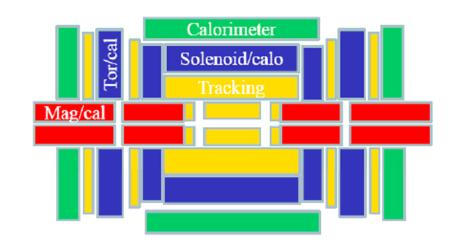
- → 2 interaction points / experiments?
- → 2 phases of single experiment (a la HERA)?
- → Other ideas


Developing a Combined Function "Magcal"?

[Greenshaw]

- Helium cooled SC magnet.
- Coils in He bath.

Space for calorimeter using He as active component? Could add stainless steel plates as absorber with readout pads:

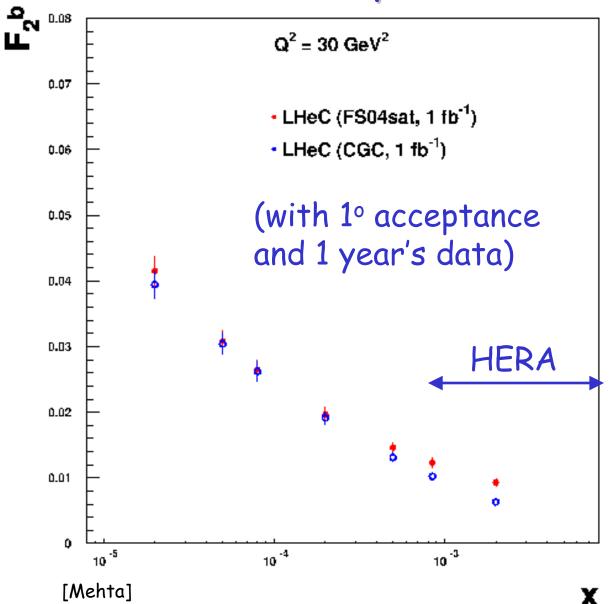

Use scintilation of liquid He to get signal?...

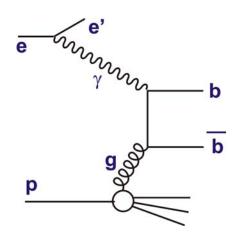
... Calo is all edges!...

- → What sort of resolution is achievable?
- → What is influence on final beam focus?
- **→** ...?

... also potentially interesting for SLHC and elsewhere?

... could even think of doing the same with solenoids / toroids?

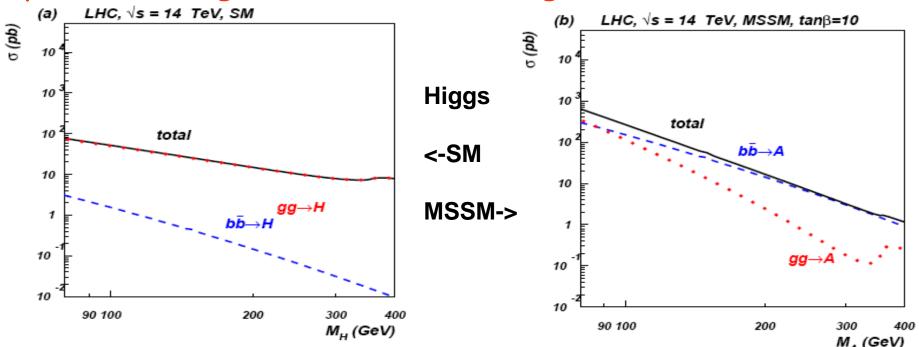

Summary


- LHC is a totally new world of energy and luminosity! LHeC proposal aims to exploit this for TeV lepton-hadron scattering
 - > ep complementing next generation pp, ee facilities
- First ECFA/CERN workshop successfully gathered accelerator, theory & experimental colleagues
 - > First debates on machine and detector layout
 - → First (often crude) tasters of physics
 - \rightarrow Many uncovered topics (eA, VM, pots, γp ...)
- Further meetings planned for April '09 and September '09
 - → Conceptual Design Report by early 2010
 - → Input to CERN strategy document mid 2010
 - → UK seedcorn funding request in near future
- · All ideas and invovlement welcome!

[More at www.lhec.org.uk]

Back-Ups Follow

Jets and Heavy Flavours

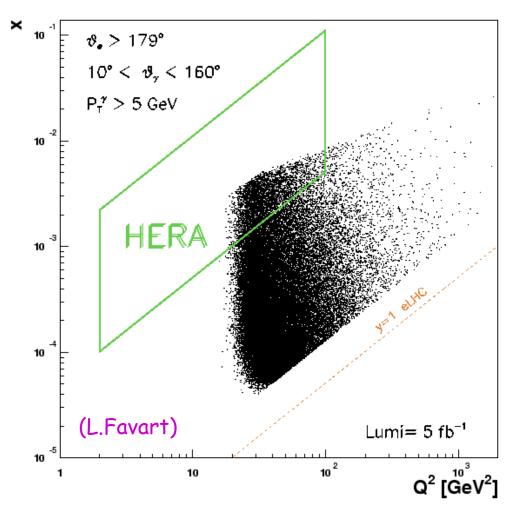


Constrain gluon (at Remarkably low x!) through jets and heavy flavour measurements

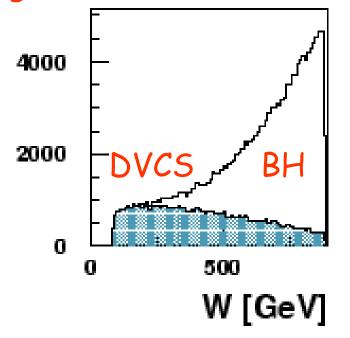
e.g. F_2^b to a few % constraining gluon down to $x \sim 2.10^{-5}$.

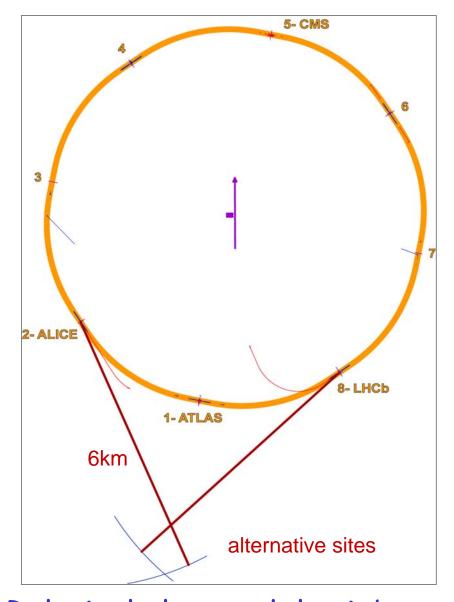
Heavy Quarks: HERA → LHC

- HERA HF information limited by kinematic range and lumi (reasonable charm, some beauty, almost no strange)
- Crucial for understanding LHC initial state for new processes (e.g. bbbar->H) and backgrounds.



• LHC predictions rely strongly on extrapolations and pQCD (e.g. CTEQ: 7% effect on W,Z rates varying HF treatment).


e p p p p


DVCS Measurement

... the classic approach to `generalised parton densities' (GPDs)

... can be tackled as at HERA through inclusive selection of ep \rightarrow ep γ and statistical subtraction of Bethe-Heitler background

Linac-Ring Design

- 140 GeV electron beam at 23 MV/m is 6km + gaps
- · CMS energy → 2 TeV!

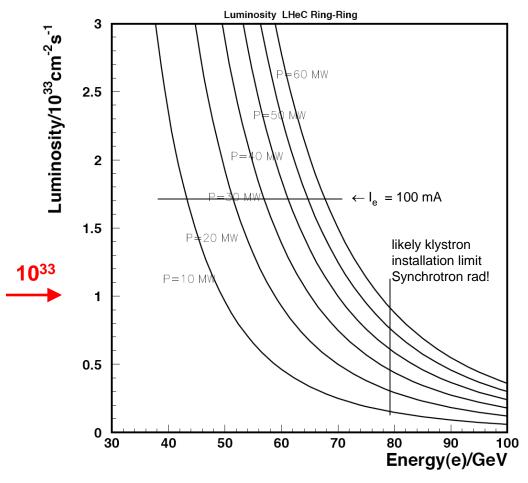
		ring-linac pulsed		ring-linac, cw , ~99% energy		
	:4	_		recover		
	units	e-	p	e-	р	
energy	GeV	70	7000	70	7000	
punch	10 ¹⁰	2	17	2	17	
population						
σ_z	cm	0.03	7.55	0.03	7.55	
beam current	mA	101	858	101	858	
(pulsed)						
emittance ε _{x,y}	nm	0.5, 0.5				
β* _{x,y}	cm	15, 15				
spacing	ns			25		
e-linac/ring	km	3.5 7 (2 linacs)				
length					-	
e- pulse length		1 :	ms	c ·	W	
repetition rate		5]	Hz	conti	nuous	
e- beam power	MW	35		70	7000	
peak	10 ³²	(0	.6	2x1	110	
luminosity	cm ⁻² s ⁻¹		<u> </u>			

S. Chattopadhyay (Cockcroft), F.Zimmermann (CERN), et al.

Relatively low peak lumi, but good average lumi Energy recovery (2 linacs?) ...else prohibitive power usage?

Luminosity: Ring-Ring

$$L = \frac{N_p \gamma}{4 \pi e \varepsilon_{pn}} \cdot \frac{I_e}{\sqrt{\beta_{px} \beta_{py}}} = 8.310^{32} \cdot \frac{I_e}{50 mA} \frac{m}{\sqrt{\beta_{px} \beta_{pn}}} cm^{-2} s^{-1}$$


$$\varepsilon_{pn} = 3.8 \mu m$$

$$N_p = 1.7 \cdot 10^{11}$$

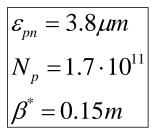
$$\sigma_{p(x,y)} = \sigma_{e(x,y)}$$

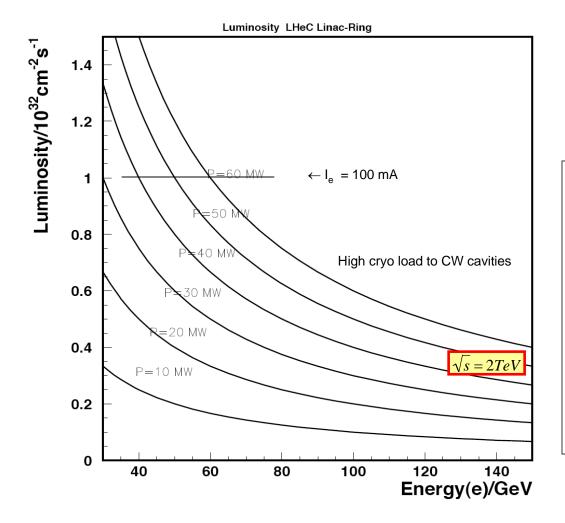
$$\beta_{px} = 1.8 m$$

$$\beta_{py} = 0.5 m$$

$$I_e = 0.35 \text{mA} \cdot \frac{P}{MW} \cdot \left(\frac{100 \text{GeV}}{E_e}\right)^4$$

10³³ can be reached in RR $E_e = 40-80 \text{ GeV } \& P = 5-60 \text{ MW}.$


HERA was 1-4 10³¹ cm⁻² s⁻¹ huge gain with SLHC p beam


F.Willeke in hep-ex/0603016: Design of interaction region for 10³³: 50 MW, 70 GeV

May reach 10³⁴ with ERL in bypasses, or/and reduce power. R&D performed at BNL/eRHIC

Luminosity: Linac-Ring

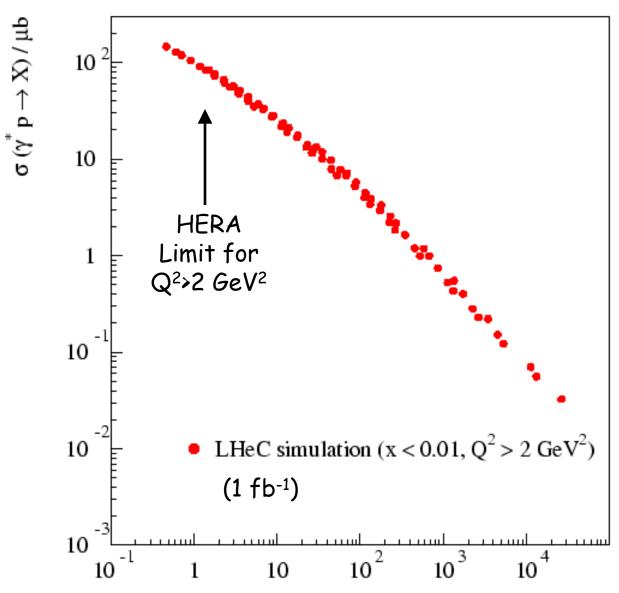
$$L = \frac{N_{p} \gamma}{4 \pi e \varepsilon_{pn} \beta^{*}} \cdot \frac{P}{E_{e}} = 1 \cdot 10^{32} \cdot \frac{P / MW}{E_{e} / GeV} cm^{-2} s^{-1}$$

$$I_e = 100 mA \cdot \frac{P}{MW} \cdot \frac{GeV}{E_e}$$

LHeC as Linac-Ring version can be as luminous as HERA II:

4 10³¹ can be reached with LR: $E_e = 40-140 \text{ GeV } \& \text{ P=}20-60 \text{ MW}$ LR: average lumi close to peak

140 GeV at 23 MV/m is 6km +gaps


Luminosity horizon: high power: ERL (2 Linacs?)

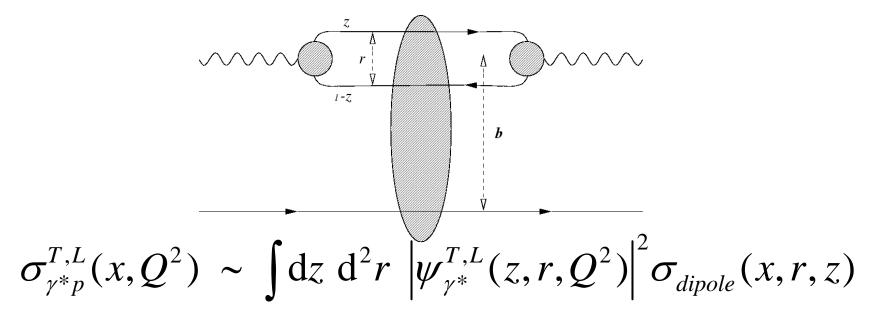
Overview of LHeC Parameters

Table 3: Main Parameters of the Lepton-Proton Collider

Property	Unit	Leptons	Protons
Beam Energies	${ m GeV}$	70	7000
Total Beam Current	mA	74	544
Number of Particles / bunch	10^{10}	1.04	17.0
Horizontal Beam Emittance	nm	7.6	0.501
Vertical Beam Emittance	nm	3.8	0.501
Horizontal β -functions at IP	cm	12.7	180
Vertical β -function at the IP	cm	7.1	50
Energy loss per turn	${ m GeV}$	0.707	$6 \cdot 10^{-6}$
Radiated Energy	MW	50	0.003
Bunch frequency / bunch spacing	MHz / ns	40 /	/ 25
Center of Mass Energy	${ m GeV}$	14	00
Luminosity	$10^{33} \text{cm}^{-2} \text{s}^{-1}$	1.	.1

Geometric Scaling at the LHeC

LHeC reaches $\tau \sim 0.15$ for $Q^2=1$ GeV² and $\tau \sim 0.4$ for $Q^2=2$ GeV²


Some (though limited) acceptance for $Q^2 < Q^2_s$ with Q^2 "perturbative"

Could be enhanced with nuclei.

 $Q^2 < 1 \text{ GeV}^2$ accessible in special runs?

Reminder: Dipole models

• Unified description of low x region, including region where Q^2 small and partons not appropriate degrees of freedom ...

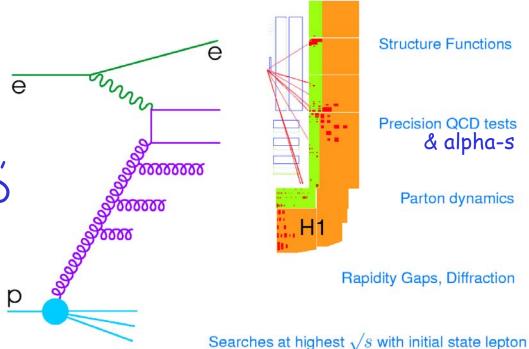
- Simple unified picture of many inclusive and exclusive processes ... strong interaction physics in (universal) dipole cross section σ_{dipole} . Process dependence in wavefunction Ψ Factors
- · qqbar-g dipoles also needed to describe inclusive diffraction

Long HERA program Forward Jets to understand parton exact cascade emissions by direct observation of jet pattern in the forward direction.

... DGLAP v BFKL v CCFM v resolved γ^* ...

Conclusions limited by kinematic restriction to high x (>~ 2.10^{-3}) and detector acceptance.

At LHeC ... more emissions due to longer ladder & more instrumentation → measure at lower x where predictions really diverge.



Beyond Inclusive Measurements

Hadronic Final States:

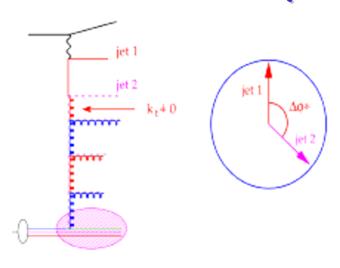
Jets, heavy flavours
 → complementary
 pdf info, gluon directly,
 how to treat HF in QCD

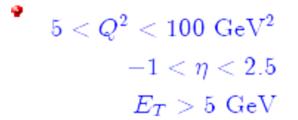
? Usefulness of HERA data often limited by scale uncties in theory

· Forward Jets,

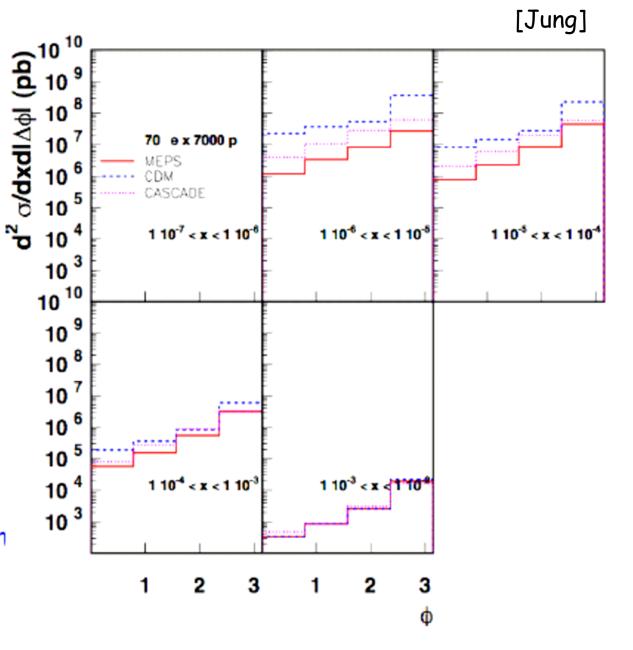
- Direct tests of assumed parton evolution patterns
- ? Understanding limited by instrumentation near beam-pipe

Diffraction


- Unique clean probe of gap dynamics and elastic scattering
- ? Understanding limited by (forward) detectors ...


Motivation for TeV Scale DIS

- -New Physics of eq Bound States, v*, Selectrons ... leptoquarks, RP violating SUSY, quark compositeness
- -The Low x Limit of Quantum Chromodynamics
 high parton densities with low coupling
 `saturating; the parton growth, new evolution dynamics
 diffraction and confinement
 quark-gluon dynamics and the origin of mass
- -Precision Proton Structure for the LHC and elsewhere essential to know the initial state precisely (b, g ...)
- -Nuclear Parton Densities


 eA with AA -> partons in nuclei, Quark Gluon Plasma
- ... some considerations follow with E_e = 70 GeV, E_p = 7 TeV, lumi ~ 10^{33} cm⁻² s⁻¹ (~ 10 fb⁻¹ year⁻¹)...

Azimuthal (de)correlations between Jets

- ullet small ${f k_{\scriptscriptstyle +}}
 ightarrow \Delta \phi \sim 180$
- large k, from evolution

Some topics from Interaction Region Group

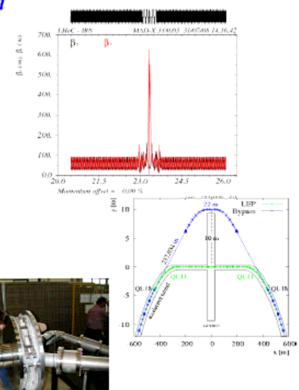
[Burkhard]

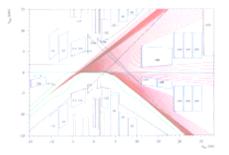
Interaction Region Design: ring ring option

detailed presentations about ...

* e-optics: design of a low beta insertion, embedded into a LEP-2 like arc structure (Alexander Kling, B.H.)

* e-geometry: bypass regions, (Helmut Burkhardt)


* p-optics: low beta insertion combined with the LHC luminosity lattice (B.H.)


* sc. IR magnets: first exotic (?) ideas about (Stephan Russenschuck)

* sc. double magnet design, active magnets
(Eugenio Paolomi, Simona Bettoni, Tim Greenshaw,)

* synchrotron radiation: and beam separation (Boris Nagorny)

* rf cavities & power consumption (John Jowett, Trevor Linnecar)

Detector Group

DETECT	OR SESSION Tuesd	ay morning		
9:00h	PK,AP,RW	Introduction		
9:15h	Norbert Wermes	Silicon Pixel Detectors for Tracking		
10:00h	Michael Moll	RD50 and silicon hardness		
10:30h		-coffee-		
11:00h	Wesley Smith	Present and Future Collider Triggers		
11:30h	Alex Cerri	Trigger and online displaced vertexing (CDF SVT)		
12:00h	Andris Skuja	CMS Hadron Calorimeter		
12:30h		-lunch-		
СОММС	N SESSION DET/AC	C/IR Tuesday afternoon		
14:00h	Tim Greenshaw	w Instrumented Magnets		
14:30h	Herman ten Kate	Magnet options for LHeC detector		
DETECT	OR SESSION Tuesd	ay afternoon		
17:00h	Els Koffeman	Gossip gaseous pixel R&D		
17:30h	Frank Simon	Calice calorimeters for the ILC		
18:00h		Open Discussion		

... lots of discussion of optimum detector technologies etc

A First Draft Detector?

Detector (1st draft):

- Barrel Solenoid Magnet:
- Barrel Liquid Argon Calorimeter
- Central-Forward-Backward TRT Gossip "particle ID" & tracking
- Central Forward-Backward Tracker
- Innermost layer of high Res Pixel (Monolithic CMOS)
- Forward Backward CALICE Type Calorimeters
- Instrumented low beta magnets

Still the issue of acceptance v luminosity optimisation

remains ... → 2 interaction points / experiments?

→ 2 phases of experiment (a la HERA)?

→ New idea: can we instrument the (superconducting) focusing quadrupoles so they provide calorimetry as well as focusing (and add some Si in front?)