Diffractive, [Elastic and Total] Cross Sections from early LHC Data

Paul Newman (University of Birmingham, ATLAS Collaboration)

- \rightarrow Brief Introduction to Diffraction
- \rightarrow Soft diffractive cross sections at the LHC
- \rightarrow Relation to the total and total inelastic cross section
- \rightarrow First results on hard diffraction

Thanks to many colleagues who worked on these data, 1 especially to Tim Martin

Diffraction, Vacuum Exchange and the Pomeron

Inelastic Diffraction and Kinematics

Generalised Optical Theorem

1) Factorise SD into a pomeron (IP) flux and a total p+IP

cross section

 $\sigma_{tot}(IP + p \rightarrow X)$

2) Similarly to total pp cross section, relate total p+IP cross section to forward elastic amplitude via optical theorem

3) Calculate SD cross sections from triple pomeron amplitudes

[similar treatment for DD]

"Standard Model" of Soft Diffraction

Deviations from this behaviour sensitive to $\alpha_{IP}(t)$

... also sensitive to absorptive corrections (multiple soft exchanges in different configurations) e.g. Durham 3 channel eikonal analysis ...

Uncertainties in LHC Predictions

Single dissociation

 σ = 14mb (PYTHIA8) σ = 10mb (PHOJET)

Double dissociation

 σ = 9mb (PYTHIA8) σ = 4mb (PHOJET)

sqrt(s) = 19.6 GeVbb→bX 205 GeV/c 100 50 TOTAL 20-(g m) d (<u>1</u>2) d (<u>1</u>2) 10 5 0.14 0.12 0.04 0.10 0.02 0.06 0.08

M²/s

Parameterisations based on old low energy data, particularly poor for DD

ATLAS Detector

Total Inelastic pp Cross Section

• Using MBTS trigger (2.1 < $|\eta|$ < 3.8), miss only elastic (pp \rightarrow pp) and low mass diffraction (pp \rightarrow pX etc)

- Unextrapolated Result below PYTHIA and PHOJET
- 5-15% extrapolation yields total inelastic cross section
- Extrapolation includes large uncertainty on low ξ dissociation

CMS: First Direct LHC Dissocⁿ Observation

Alternative Approach: Rapidity Gaps

ALICE: Total SD and DD Cross Sections

ATLAS Acceptance

Rapidity gaps identified using full range of calorimetry ($|\eta| < 4.9$) and inner tracking detector ($|\eta| < 2.5$)

Detector is sensitive to particle production with $p_T > 200 \text{ MeV}$... Measurements defined by this requirement

Higher p_T cuts also applied to investigate dependence

13

ATLAS Measurement

Uses only the first ever physics run at √s = 7 TeV.

30th March 2010, from 13.24 to 16.38

7 minutes shorter than `Lord of the Rings: Return of the King'

Pile-up occurs in less than 1 event in 1000

Integrated luminosity of 7.1 μb^{-1}

Peak instantaneous luminosity of 1.1 x 10²⁷ cm⁻² s⁻¹ 😳

Gap Finding Algorithm / Observable

Divide detector into rings of width usually $\Delta \eta = 0.2$

Decide whether there are particles with pT above threshold (usually 200 MeV) in each ring

Define $\Delta \eta^F$ = larger continuous run of empty rings extending to limit of acceptance in forward or backward direction

ATLAS: Differential gap cross-sections

- Cross sections measured from first $\sqrt{s} = 7$ TeV LHC run
- Differential in rapidity gap size $\Delta\eta^{\text{F}}$
- $\Delta \eta^{F}$ extends from η = ±4.9 to first particle with $p_{t} > p_{t}^{cut}$

 $200 \text{ MeV} < p_t^{cut} < 800 \text{ MeV}$

 $0 < \Delta \eta^{F} < 8$

Corrected for experimental effects to level of stable hadrons

ATLAS Differential Gap Cross Section

- Precision between ~8% (large gaps) and ~20% ($\Delta \eta^{F}$ ~ 1.5)
- Small gaps sensitive to hadronisation fluctuations / MPI
- Large gaps measure x-sec for SD [+ DD with M_Y <~ 7 GeV]⁷

Small Gaps & Hadronisation Fluctuations

in probability for hadronisation fluctuations in non-diffractive events to produce large gaps

Fig. 4 Probability for finding a rapidity gap (definition 'all') larger than $\Delta \eta$ in an inclusive QCD event for different threshold p_{\perp} . From top to bottom the thresholds are $p_{\perp,\text{cut}} = 1.0, 0.5, 0.1 \text{ GeV}$. Note that the lines for cluster and string hadronisation lie on top of each other for $p_{\perp,\text{cut}} = 1.0 \text{ GeV}$. No trigger condition was required, $\sqrt{s} = 7 \text{ TeV}$

Cluster Fragmentation: HERWIG++

- HERWIG++ with underlying event tune UE7-2 contains no explicit model of diffraction, but produces large gaps at higher than measured rate and a "bump" near $\Delta \eta^{F} = 6$

- Effect not killed by removing colour reconnection or events with zero soft or semi-hard scatters in eikonal model

Increasing the pt cut defining gaps

Increasing the pt cut defining gaps

As p_t^{cut} increases, data shift to larger $\Delta \eta^F$ in a manner sensitive to hadronisation fluctuations and underlying event

Switching to pt^{cut} = 400 MeV
doesn't change qualitative
picture

- Diffractive / non-diffractive processes barely distinguished at p_t^{cut} = 800 MeV 22

Large Gaps and Diffractive Dynamics

-Diffractive plateau with ~ 1 mb per unit of gap size for $\Delta \eta^F$ > 3 broadly described by models - PYTHIA high (DD much larger than in PHOJET)

- PHOJET low at high $\Delta\eta^{\text{F}}$

Large Gaps and Diffractive Dynamics

Default PHOJET and PYTHIA models have $\alpha_{IP}(0) = 1$ Donnachie-Landshoff flux has $\alpha_{IP}(0) = 1.085$ Data exhibit slope in between these models at large $\Delta \eta_{24}^{F}$ [No absorptive corrections in either case]

Sensitivity to Pomeron Intercept

Extract $\alpha_{IP}(0) = 1 + \epsilon$ by optimising description by PYTHIA8 as ϵ varies in a region where ND contributions are negligible

Pomeron Intercept in Simple Pole Model

Uncertainty heavily dominated (factor 10) by model dependence of hadronisation in correcting to truth level

26

An attempt to tune PYTHIA8

Input to tuning is just $\alpha_{IP}(0)$ from fit and overall fraction of diffractive events (crudely) extracted in inelastic cross section paper.

→ describes small gaps well, but not transition between non-diffractive and diffractive regions

A detour: TOTEM and the Elastic Cross Section

- The most hermetic detector ever?
- Elastic scattering measurement using Roman pots at 220m

Elastic Cross Section from TOTEM

Precise t dependence of elastic (pp \rightarrow pp) cross section for $|t| > 0.36 \text{ GeV}^2$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} \propto e^{bt} \quad \text{at small } |\mathsf{t}|$$

Position of dip characteristic of transverse size of proton (moves to smaller |t| as s Increases)

Low |t| Elastic Cross Section from TOTEM

Dedicated run with special optics allows measurement down to |t| = 0.02 GeV²

KMR Model with Proton Opacity

... simultaneous description of ATLAS gaps data and elastic cross section data from ISR to Totem based on a single pomeron in a 3-channel eikonal model, with significant absorptive corrections in gaps / dissociation case

Low |t| Elastic Cross Section from TOTEM

- Luminosity measurement from CMS

- ρ = ratio of real to imaginary parts of forward elastic amplitude from fits to previous data.

Totem Total (and Elastic) Cross Section $\sigma_{el} = (24.8 \pm 0.2^{(stat)} \pm 1.2^{(syst)}) \text{ mb} \quad \sigma_{T} = (98.3 \pm 0.2^{(stat)} \pm 2.7^{(syst)} \begin{bmatrix} +0.8 \\ -0.2 \end{bmatrix}^{(syst \text{ from } \rho)}) \text{ mb}$

Investigating the Low $\boldsymbol{\xi}$ Extrapolations

[Inelastic cross section excluding diffractive channels with $\xi < \xi_{cut}$]

- Integrating ATLAS gap cross section up to some max $\Delta \eta^F$ (equivalently min ξ_X) and comparing with TOTEM indicates that small ξ_X region underestimated in PHOJET and PYTHIA: - 14 mb with $\xi < 10^{-5}$, compared to 6 (3) mb in PYTHIA (PHOJET)

Investigating the Low ξ Extrapolations

Investigating the Low $\boldsymbol{\xi}$ Extrapolations

ATLAS (ALFA) result eagerly awaited to confirm TOTEM Not solved by increasing aIP(0) to Donnachie-Landshoff

... required dependence more like 1/ξ³ than 1/ξ² [PPR triple Regge term]

Success for Durham model (RMK) with enhanced low mass diffraction (~ Good & Walker - elastic scattering of excited proton eigenstates³

Virtual photon probes pomeron partonic structure rather like inclusive DIS ...

38

>100 papers later ...

ZEUS v H1 Diffractive DIS Data

Few % precision over wide kinematic range Reasonable agreement between H1 and ZEUS

39

e

Diffractive Parton Densities (DPDFs)

DPDFs dominated by a gluon density which extends to large z

Example of DPDFs Predicting Diffractive DIS

... photoproduction jets suggestive of similar effects at level of A factor of 2 [Hard to describe theoretically]

W and Z events with gaps at CMS

After pile-up corrections, ~1% of W and Z events exhibit no activity above noise thresholds over range 3 < $\pm \eta$ < 4.9 ... interpretation complicated by non-diffractive hadronisation fluctuations ...

 $ilde{\eta}$ (= 4.9 - $\Delta\eta$) end-point of gap - starting at acceptance limit

$$\sum_{X} E - p_z \approx 2E_p \cdot \xi_X$$

for dissociation system in +z direction ... and lost particles have $E-p_z \sim 0$

$$\widetilde{\xi}^{+} = C \frac{\sum \left(E^{i} + p_{z}^{i}\right)}{\sqrt{s}}$$

Define for dissociation system in the -z direction (and E+pz for +z dissociation). ... well correlated with ξ at low ξ 44

CMS Dijets with Low E±p_z

Fit linear combination of PYTHIA (ND) and POMPYT (DPDF-based diffraction)

Depending on ND model, gap survival probability ~ 0.17 - 0.23 (larger than Tevatron, and compared with predictions ~0.03!)

45

Non-diffractive gap fluctuations? Need proton-tagged data?

Summary

Precise LHC soft diffractive, elastic, total cross section data

- Broadly described by single pomeron with intercept larger than unity: $\alpha_{\text{IP}}(0) \sim 1.06$

- Possible to simulataneously describe ATLAS diffractive dissociation and TOTEM elastic scattering if absorptive corrections included.
- Low mass diffractive dissociation is large!

First data on diffractive hard scattering

- Suggestion of surprisingly large gap survival probability
- Need improved understanding of hadronisation
 - fluctuations leading to large gaps in non-diff data
- Proton tagging can by-pass this issue

Hard Diffraction: Tevatron

Most recent paper from CDF: Phys Rev D82 (2010) 112004: Using Roman pot proton taggers ... Diffraction with $0.03 < \xi < 0.1$, $|t| < 1 \text{ GeV}^2$ accounts for -1.00 ± 0.05 (stat.) ± 0.10 (syst.) % of W production

- 0.88 ± 0.21 (stat.) ± 0.08 (syst.) % of Z production

at the Tevatron (suggests small gap survival probability)

Comparable with lots of other diffractive processes measured using large rapidity gap approach ...

Hard component	Fraction (R)%
Dijet	0.75±0.10
W	1.15±0.55
b	0.62±0.25
J/Ų	1.45 V 0.25

Universal suppression relative to factorised predictions? 47

Diffraction & Multi-Parton Interactions

- Trivially, more than 1 parton in t channel

- Gap survival probabilities / absorption: ... multiple interactions with large impact parameters

- Absorptive effects due to multiple soft exchanges in minimum bias models

- Less obviously, small rapidity gaps as sensitive probe of hadronisation fluctuations and underlying event

Diffraction & Multi-Parton Interactions

- Trivially, more than 1 parton in t channel

- Gap survival probabilities / absorption: ... multiple interactions with large impact parameters

- Absorptive effects due to multiple soft exchanges in minimum bias models

- Less obviously, small rapidity gaps as sensitive probe of hadronisation fluctuations and underlying event

Not covered here

- Elastic scattering in pp / ppbar (see Ken Osterberg)
- Exclusive vector mesons in ep and pp (see Marcella Capua $^{\mathfrak{P}}$

Inner Detector

Calorimeters

In the calorimeters electronic noise is the primary concern. We use the standard ATLAS Topological clustering of cells. The seed cell is required to have an energy significance $\sigma = E/\sigma_{Noise} > 4$. Statistically, we

Total Inelastic pp Cross Section

Optical Theorem:

$$\sigma_{TOT}^{2} = \frac{16\pi (hc)^{2}}{1+\rho^{2}} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$$

Using luminosity from CMS:
$$\frac{d\sigma_{EL}}{dt} = \frac{1}{L} \cdot \frac{dN_{EL}}{dt}$$

ρ from COMPETE fit: $ρ = 0.14^{+0.01}_{-0.08}$

$$\sigma_{TOT} = \sqrt{19.20 \,\mathrm{mb}\,\mathrm{GeV}^2 \cdot \frac{d\sigma_{EL}}{dt}}_{t=0}$$

Single Diffractive Kinematics

W

For photon virtuality $Q^2 \rightarrow 0$:

W = γp centre of mass energy

t = squared 4-momentum transfer at proton vertex

 $x_{IP} = \xi = M_{\chi}^2/W^2$ = fractional momentum loss of proton (momentum fraction IP/p)

For large Q² (partonic structure resolved)

 $\beta = x / x_{IP}$ (momentum fraction, struck q / IP)

NOT NEEDED??????

The Gluon Density!

 Q^2 evolution of F_2 is used to extract gluon density, assuming DGLAP evolution.

Internally self-consistent, but (unlike quark density extractions), this is model (DGLAP) dependent!

Factorisation and Pomeron Trajectory

No evidence for Q^2 or β dependence of $\alpha_{IP}(t)$ or t slope

 $\alpha_{\text{IP}}(0)$ consistent with soft IP α_{IP} ' smaller than soft IP

→ Dominantly soft exchange → Absorptive effects?... ⁵⁶

'H1 2006 DPDF Fit A' (log z scale)

 $\chi^2\,{\sim}158$ / 183 d.o.f.

- Experimental uncertainty obtained by propagating errors on data through χ^2 minimisation procedure
- Theoretical uncertainty by varying fixed parameters of fit and Q_0^2 (s.t. $\Delta \chi^2 = 1$)
- Singlet constrained to ~5%, gluon to ~15% at low z, growing a lot at high z

`Fit A' and `Fit B' DPDFs (linear z scale)

 Lack of sensitivity to high z gluon confirmed by dropping (high z) C_g parameter, so gluon is a constant at starting scale!

•Fit B

 χ^2 ~164 / 184 d.o.f.

- Quarks very stable
- Gluon similar at low z
- Substantial change to gluon at high z

Rapidity Gap Survival Probability in Diffractive Dijet Photoproduction

ZEUS $[E_T^1 > 7.5 \text{ GeV}]$... No evidence for any gap destruction H1 $[E_T^1 > 5 \text{ GeV}]$... Survival probability < 1 at 2σ significance

 $\sigma(\text{H1 data}) / \sigma(\text{NLO}) = 0.58 \pm 0.12 \text{ (exp.)} \pm 0.14 \text{ (scale)} \pm 0.09 \text{ (DPDF)}$

- Gap survival unexpectedly has little dependence on x,
- Hint of a dependence on jet E_T ?

Refined gap Survival Model (KKMR)

Direct contribution remains unsuppressed

Suppression factor 0.34 applies to Hadron-like (VMD) part of photon structure only (low $x_v < 0.1$)

Point-like (anomalous) part of photon structure has less suppression (~0.7-0.8)

Smaller gap destruction effects with some E_{T} dependence

H1 data / theory NLO H1 2006 Fit B, KKMR suppressed × (1+ δ_{hadr}) data correlated uncertainty NLO H1 2006 Fit B, resolved × 0.34 × (1+ δ_{hadr}) data / theory data / theory (h) 1.5 1.5 0.5 0.5 0.2 0.4 0.6 0.8 10 12

60 Fair agreement with both H1 and ZEUS data ...

[hep-ph/0911.3716]

(c)

Now CMS Jets

... after gap cut and correction to cross section level ...

CMS preliminary, p+p->jet_jet_, √s=7 TeV, hl<4.4, p___>20 GeV dσ_{ij}/dξ̃ (μb) It's a mystery! 10 Only proton-tagged Data can resolve Really complicated DATA PYTHIA6 Z2 Issue of tails of PYTHIA8 tune1 OMPYT CTEQ6L1 & H1 Fit B ND distribution to POMWIG CTEQ6L1 & H1 Fit B ···· PYTHIA8 SD+DD 10⁻¹ OWHEG+PYTHIA8 CTEQ6M & H1 Fit B Large gaps 10⁻³ 10⁻² ξ

Exploiting Gap-Lepton η Correlation

Lepton pseudorapidity with + sign if lepton in same hemisphere as gap, else - sign.

Fit to combination of PYTHIA and POMPYT hard diffraction model suggests significant (~50%) diffractive contribution

Extraction of (limits on?) gap survival probabilities at the LHC from diffractive W/Z and jet production eagerly awaited ... survival may be small (~3% according to phenomenology?