The Deep-Inelastic Scattering Landscape

 $\gamma^*(\mathbf{Q}^2)$ (X) p

- 1) Overall DIS Context
- 2) The Electron Ion Collider / ePIC Experiment
- 3) Introduction to the Large Hadron electron Collider

ECFA-UK Meeting on Studies for the ESPPU (Durham) 24 September 2024

1

Paul Newman (Birmingham)

arXiv:1206.2913 arXiv:2007.14491

Max Klein 13/5/1951 - 23/8/2024

Scattering Experiments Exploring Matter

1911, Rutherford discovery of atomic nucleus *"It would be of great scientific interest if it were possible to have a supply of electrons … of which the individual energy of motion is greater even than that of the alpha particle." [1926]*

1950s, Hofstadter, 200 MeV electrons on fixed targets First observation of finite proton size

1969, SLAC, 20 GeV electrons on fixed targets

3 Absence of dependence of (suitably expressed) cross section on q^2 (= squared 4 momentum transfer) implies scattering from point-like quarks

- The only ever collider of electron with proton beams: **√sep ~ 300 GeV**

- Equivalent to **50 TeV** electrons on fixed target

… Resolved dimension **~ 10-20 m**

 \rightarrow Source of much of our knowledge of proton (longitudinal) structure extending to partons of $x < 10^{-4}$ mom^m fraction

BUT … \rightarrow Only ~0.5 fb⁻¹ per experiment \rightarrow No deuterons or nuclei \rightarrow No polarised targets

Proton PDFs from HERA (HERAPDF2.0)

The Electron-Ion *Collider*

Physics questions to be addressed at EIC

How is proton mass generated from quark and gluon interactions? Atom: Binding/Mass = 0.00000001 Nucleus: Binding/Mass = 0.01 Proton: Binding/Mass = 100

 $b₁$

What does the proton look like in 3D?

How is proton spin generated?

- How do the dynamics of high density systems of gluons tame the low x growth?

Fraction of Overall Proton Momentum Carried by Parton

 xP_z

Semi-Inclusive

Observables / Detector Implications Inclusive

- Traditional DIS, following on from fixed target experiments and HERA \rightarrow Longitudinal structure … high acceptance, high performance electron identification and reconstruction

- Single particle, heavy flavour & jet spectra
	- \rightarrow p_T introduces transverse degrees of freedom
- Quark-flavour-identified DIS
	- \rightarrow Separation of u,d,s,c,b and antiquarks
	- … tracking and hadronic calorimetry
	- … heavy flavour identification from vertexing
	- … light flavours from dedicated PID detectors

- Processes with final state 'intact' protons \rightarrow Correlations in space or momentum between pairs of partons … efficient proton tagging over wide acceptance range whigh luminosity and the set of the

A Detector for the EIC

Magnet

New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- Gaseous tracker: MPGDs (uRWELL, MMG) cylindrical and planar

PID

- high performance DIRC (hpDIRC)
- dual RICH (aerogel + gas) (forward)
- proximity focussing RICH (backward)
- ToF using AC-LGAD (barrel+forward)

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- PbWO₄ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)
- 9m long x 5m wide
- Hermetic (central detector $-4 < \eta < 4$)
- Extensive beamline instrumentation not shown (see later)
- Much lower radiation fluxes than LHC widens technology options 10

UKRI-Infrastructure-Funded UK Involvement

WP1: MAPS \rightarrow 65nm CMOS (wafer scale) stitched sensors, developed from ALICE-ITS3, to be deployed in central tracker \rightarrow Construction of 2 barrel layers, corresponding to around 1/3 of silicon tracker

WP2: Timepix \rightarrow Application of pixel sensors for beamline electron tagger for luminosity and physics at $Q^2 \rightarrow 0$

WP3: Lumi Monitoring \rightarrow Novel pair-spectrometer, beamline $\gamma \rightarrow$ ee counting

WP4: Accelerator \rightarrow Primarily SRF systems for Energy Recovery cooler. \rightarrow Also crab-cavity RF synchronisation, beam position monitoring, Energy Recovery modelling and design

Tracking Detectors

Primarily based on MAPS silicon detectors (65nm technology)

- Leaning heavily on ALICE \bullet
- e production design des des sols des des - Stitched wafer-scale sensors, thinned and bent around beampipe

 \rightarrow Very low material budget (0.05X₀ per layer for inner layers)

- 20x20µm pixels
- **Full tracking system: Silicon Vertex** tayers + 3 disks (total **o**.3m² sitico layers + 5 disks (t - 5 barrel layers + 5 disks (total 8.5m² silicon)

Inner Barrel (IB)

Interaction Region / Beamline Instrumentation

- Extensive beamline instrumentation integrated into IR design

- Tagging electrons and photons in backward direction for lowest Q^2 physics studies and lumi monitoring via photon counting in $ep\rightarrow ep\gamma$

More ePIC Detector $\left\{\sqrt{\frac{2}{n}}\right\}$ with synergies elsewhere the **WEP** WO E ELIC DECECTOR A MUSIC W CHERENCO CHERENGER TECHNOLOGIES AT LOWER MOMENTAL COMPLETE

Time-of-flight or dE/dx

Imaging eCAL **Comprehensive Particle ID**

Hillman Rollers

Impact of EIC on Parton Densities

Fractional total uncertainties with / without simulated EIC data added to HERA (linear x scale)

… EIC brings reduction in large x uncertainties for all parton species

Also:

- $\alpha_s(M_Z^2)$ to 0.3% (cf 0.6% now)

- Nuclear parton densities at low x for the first time

Proton Spin

- Spin ½ is much more complicated than ↑↑↓ …

- EMC 'spin crisis' (1987) … quarks only carry

~10% of the nucleon spin (spin $\frac{1}{2}$ more than $\uparrow \uparrow \downarrow$)

Very little known about gluon helicity contribution and low x region

Jaffe-Manohar sum rule:

Quark helicity Gluon helicity **Quark canonical** orbital angular momentum

Gluon canonical orbital angular momentum

EIC Yellow Report

- Simulated EIC inclusive data (15fb-1, 70% e,p Polaris'n) shows very significant impact on polarised gluon and quark densities \rightarrow orbital angular momentum constrained by implication Impact of the EIC on polarized PDFs: DSSV

Room left for potential OAM contributions to the proton spin from partons with $x > 0.001$

Proton Mass

- Constituent quark masses contribute ~1% of the proton mass
- Remainder is `emergent' \rightarrow generated by (QCD) dynamics of multi-body strongly interacting system trace anomaly (20%)
- Decomposition along similar lines to spin:

'KE' and 'PE' from

confinement and

relative motion

Understanding 3D relative location and motion of partons within proton is pathway to understanding proton mass emergence 17

quark energy (29%)

gluon energy (34%)

Ji's proton mass decomposition

3D Structure

Exclusive processes, yielding intact protons, require exchange of ≥2 partons

 \rightarrow Sensitive to parton correlations in longitudinal & transverse momentum and spatial coordinates

Status / Timeline

- Total cost ~\$2.5Bn (US project funds accelerator + most of one detector)

Technical Design Report: end 2025 (prelim 2024)

FY27 FY19 FY20 FY21 FY22 FY23 FY24 FY25 FY26 FY28 FY29 FY30 FY31 **FY32 FY33 FY34 FY35** 01 02 03 04 04 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 0 $CD-O(A)$ $CD-1(A)$ $CD-3A$ $CD-2/3$ CD **Construction Phase** Early CD-4 $CD-4$ Jan 2024 Dec 2019 Jun 2021 $CD-3B$ Apr 2025 Completion **Aproved Completion** Oct 2024 Oct 2032 Oct 2034 Accelerator **Research & Development** Systems **Research &** ٠ **Science Phase Development Conclusion of** Detector **Research & Development RHIC operations** Infrastructure Design Accelerator Systems Detector Infrastructure \blacksquare **Construction &** Accelerator **Procurement, Fabrication, Installation & Test Installation** Systems E DOU DOR, MAR DON DON DON DOR 1990 DE DIE DIE N ш **Procurement, Fabrication, Installation & Test** Detector Accelerator **Commissioning & Pre-Ops** System: Commissioning & Pre-Ops Detector 19Data Critical Level 0 Key Completed Planned (A) Actual Date Milestones Path

- Still several steps to go, but on target for operation early/mid 30s

LHeC (>50 GeV electron beams) E_{cms} = 0.2 – 1.3 TeV, (Q²,x) range far beyond HERA run ep/pp together with the HL-LHC (\gtrsim Run5)

LHeC and FCC-eh - Recirculating Energy-Recovery Linac (ERL) colliding with LHC (or FCC) hadrons at CERN

- 'Sustainable' acceleration: ~100 MW (similar to LHC today)
- Technology development for electron machines or injectors?

FCC-eh (60 GeV electron beams) $E_{\rm cms}$ = 3.5 TeV, described in CDR of the FCC run ep/pp together: FCC-hh + FCC-eh

Energy Recovery 10⁶ **Recover plant Completed Power plant Linacs**

- Demonstrating ERL scalability is critical path
- Prototype (PERLE @ IJCLab / Orsay) implementation started
- First stage (one turn) by 2028.

HV tanks

Electron DC-gun Photo-cathode

CDR: J.Phys.G 45 (2018) 6, 065003

FCC-eh study towards European Strategy Structure of CERN-mandated LHeC /

A largely UK-conceived project and still with UK leadership throughout

[Coordinator Jorgen d'Hondt]

Running Scenarios Considered in CDR

- $e^{\pm}p$ 50 GeV x 7 TeV with lepton polarization +0.8 / 0 / -0.8

 $[Pile-up -0.1]$

Running concurrently with pp at HL-LHC:

... integrated lumi of 20 fb-1 per year at Run $5 \rightarrow 50$ fb⁻¹ initial dataset ... integrated lumi of 50 fb-1 per year at Run 6 \rightarrow few 100 fb⁻¹ total @ HL-LHC

Running in standalone ep mode:

... integrated lumi of 180 fb-1 per year \rightarrow 1 ab⁻¹ total target in a few years

 $-$ eA 50 GeV x 2.76 TeV at 10 fb-1 per year

LHeC Physics Targets and Detector Implications Standalone Higgs, Top,

EW, BSM programme

 \rightarrow General purpose particle physics detector \rightarrow Good performance for all high p_T particles \rightarrow Heavy Flavour tagging

Precision proton PDFs, including very low x parton dynamics in ep,eA \rightarrow Dedicated DIS exp't \rightarrow Hermeticity \rightarrow Hadronic final state

- resolution for kinematics
- \rightarrow Flavour tagging / PID
- \rightarrow Beamline instruments

Detector Overview (as in 2020 CDR Update)

Compact 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)

Hermetic - 1º tracking acceptance forward & backward.

Beamline also well instrumented

'Could be built now', but many open questions:

- A snapshot in time, borrowing heavily from (HL)-LHC (particularly ATLAS)
- Possibly lacking components for some ep/eA physics (eg. Particle ID)
- Not particularly well integrated or optimized

... Synergies with EIC, LHCb, ALICE, future lepton colliders still to be explored

Detector technologies build on **LHC** and EIC and inform future lepton colliders readout en la provincia integrativa en la provincia integrativa en la provincia integrativa en la provincia in pixel 100 \Box \Box 400 nton collida

• Very thin: 0.1mm for all sensors **e.g. Silicon tracker** design in CDR

- HV-CMOS MAPS with $\frac{1}{2}$ (as ALICE and ePIC) and ∑
Semi-elliptical inner bent / stitched wafers layers to cope with synchrotron fan \rightarrow ~20% X_0 / layer up to η -4.5

e.g. Forward proton spectrometer in cold region (~420m)?

- Reuse of technology proposed for LHC, accessing protons scattered at very low momentum loss

The FP420 R&D Project: Higgs and New Physics with forward protons at the LHC

LHeC: Revolutionary Proton PDF Precision

e.g. High x Gluon Density

- Extends upper mass reach of many LHC BSM searches - Facilitates LHC precision measurements (e.g. $M_w \rightarrow 2$ MeV from PDFs, $sin^2\theta \rightarrow 0.03\%$) \rightarrow Elucidates novel very low x dynamics

LHeC (SM) Higgs Programme

Yields for $1ab^{-1}$ (LHeC), $2ab^{-1}$ (FCC-eh) P=-0.8

- Dominant production mechanism charged current (WW), easily distinguished from sub-dominant neutral current (ZZ)

e.g. Expected Future Collider sensitivities combined with HL-LHC

Kappa-3, 2019

Future colliders combined with HL-LHC Uncertainty values on $\Delta \kappa$ in %. Limits on Br (%) at 95% CL.

[JHEP 01 (2020) 139]

A 2040s Bridging Opportunity?

- **LHeC is not the next major new collider for CERN**
- **LHeC could be an impactful final upgrade to LHC …**
	- **- potentially 'affordable' on required timescale**
	- **- technically realisable for late 2030s (ERL technology = critical path)**
	- **- extending energy frontier sensitivity within a few years of running**
	- **- complementing and enabling HL-LHC programme**
	- **- ensuring continuity of collisions and scalar sector exploration in the 2040s**
	- **- exploring SRF, ERL options & detector technologies**

… as a testing ground (injector?) for a future major facility

SUMMARY

From the early 2030s: The Electron Ion Collider will transform our understanding of nucleon and nuclear structure, scientifically complementing past / future energy frontier DIS facilities.

From the late 2030s: The Large Hadron electron Collider offers an achievable bridging project for CERN, with an impactful physics programme, including further empowerment of the LHC and exploration of the scalar sector.

... see following talks from Claire & Monica

"Circles in a circle" Wassily Kandinsky (1923) Philadelphia Museum of Art