<u>A Detector^(*) for</u> <u>the Large Hadron-</u> <u>electron Collider</u>

Paul Newman Birmingham University

EPS 2015 Vienna 24 July 2015

(*) Current Baseline Linac-Ring Version

LHeC / FCC-he Context

LHeC CDR, July 2012 [arXiv:1206.2913]

- Lepton-hadron scattering at the TeV scale ...

LHeC: 60 GeV electrons x LHC protons & ions → 10³⁴ cm⁻² s⁻¹ → Simultaneous running with ATLAS / CMS sometime in HL-LHC period

FCC-he: 60 GeV electrons x 50 TeV protons from FCC

Detector Design Overview

- Present size 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
- Forward / backward asymmetry reflecting beam energies
- Demanding tracking \rightarrow high fraction of pixels, wide acceptance

Interaction Region & Magnets

- Dual dipole magnets (0.15 0.3 T) throughout detector region (|z| < 14m) bend electrons into head-on collisions
- Eliptical beampipe (6m x 3mm Be) accommodates synchrotron fan
- 3.5 T Superconducting NbTi/Cu Solenoid in 4.6K liquid helium cryo.

Z [m]

-0.5

Tracking Region

- Long tracking region \rightarrow 1° electron hits 2 tracker planes
- Forward direction most demanding (dense, high energy jets)
- Pixels (CPT) + Strips; several technologies under discussion

Tracking Simulation

Performance evaluated from basic layout (LicToy 2.0 program)

- Central tracks:

Excellent track resolution: $\Delta p_t/p_t^2 \rightarrow 6.10^{-4} \text{ GeV}^{-1}$ Excellent impact parameter resolution: $\rightarrow 10 \mu \text{m}$

- Forward / Backward tracks:

Resolution degrades for $\theta < 5^{\circ}$

At 1°, bending field component = 0.36 T (similar to dipole)

Barrel EM Calorimeter

Liquid Argon Barrel EM Calorimeter inside coil

- -2.3 < η < 2.8
- Possibly accordion geometry
- 2.2mm lead + 3.8mm LAr layers
- Total depth ~ 20 X_0

[20 GeV electron]

Calorimeters Overview

Current design based on (experience with) ATLAS (and H1), re-using existing technologies

- Barrel HAD calorimeter, outside coil \rightarrow 4mm Steel + 3mm Scintilating Tile \rightarrow 7-9 λ , $\sigma_{\rm E}/{\rm E} \sim 30\%/{\rm JE} + 9\%$ [~ ATLAS]

- Forward end-cap silicon + tungsten, to cope with highest energies & multiplicities, radiation tolerant EM \rightarrow 30X₀, Had \rightarrow 9 λ

- Backward end-cap Pb+Si for EM (25 X_0) Cu+Si for HAD (7 λ)

Muon System

Baseline: Provides tagging, but not momentum measurement : Angular coverage \rightarrow 1° vital eg for e.g. elastic J/ Ψ : Technologies used in LHC GPDs and their upgrades (more than) adequate

- 2 or 3 Superlayers
- Drift tubes / Cathode strip
 chambers → precision
 Resistive plate / Thin Gap
 chambers → trigger + 2nd coord]

- Forward proton & neutron tagging
- -Backward electron tagging & luminosity monitoring ($ep \rightarrow ep\gamma$)

First Thoughts on FCC-he Detector

- Shower depths: dimension x ln(50/7)~2 fwd, ~1.3 bwd, central
- How to ensure head-on-collisions? [p Crab cavities? Dipoles?]
- Higgs physics \rightarrow improved muon detectors, b tagging ...

Summary

- Possible LHeC detector solutions evaluated in some detail

- Ideas shown here based on existing LHC P2 technologies and do not require significant R&D

- May change in response to machine design development, physics demands or new good ideas!

Full detector simulation under development using DD4HEP
 tool-kit → towards a Technical Design Report

LHeC

More, at LHeC
web...
hec.web.cern.ch
and ...
LHeC Study Group (CDR), J Phys G39 (2012) 075001
Klein & Schopper, CERN Courier, June 2014
Newman & Stasto, Nature Phys 9 (2013) 448
Bruening & Klein, Mod Phys Lett A28 (2013) 1130011