Towards Accuracy at Small x: Experimental Overview

Edinburgh, 10 September 2019

Paul Newman (University of Birmingham)

- Where does HERA leave us?
- 2) Future DIS facilities
- 3) LHC observables v low x sea quarks and gluons
- 4) Diffractive observables
- 5) Other observables sensitive to novel low x effects

...birth of experimental low x physics

- The only ever collider of electron beams with proton beams:

 $\int s_{ep} \sim 300 \text{ GeV}$

- Still publishing papers, though main results are now out

Low x Physics is Driven by the Gluon

... knowledge comes mainly from inclusive NC HERA data

Final HERA Picture of Proton (HERAPDF2.0)

- ~2% precision on gluon for $10^{-3} < x < 10^{-1}$
- Gluon uncertainty explodes between $x=10^{-3}$ and $x=10^{-4}$
- Gluon itself is rising in a seemingly non-sustainable way ...
- Note the 'Standard' presentation is at $Q^2 = 10 \text{ GeV}^2$

Evolution to Other Scales

- Electroweak scale $\sim M_Z^2$ (LHC precision physics) ... gluon rise gets sharper, error band shrinks
- Parameter scale ~ 1.9 GeV² (where lowest x data exist)

The "Pathological" Gluon: Implications

- Fast growth of low x gluon appears unsustainable → new low x gluon-driven dynamics?
- Recombine $(gg \rightarrow g)$, non-linear / saturation / (density effects)?
- Log(1/x) resummation (energy effects)?
- Just DGLAP (+ Higher twists)?
- → The implications of the high density, small coupling, regime of parton dynamics are not well understood
- → Is there any evidence for novel low x effects in HERA data?...

Looking for Changes in patterns in HERA Data

HERA inclusive data well described by $F_2 = Ax^{-\lambda(Q_2)}$ with fixed $A \sim 0.2$ for all $Q^2 > \sim 1$ GeV²

From 2D local x-derivatives: Q²/GeV no evidence here for deviation from monatonic rise of structure functions towards low x in perturbative region.

... no smoking guns are directly available from the HERA data → effects are subtle

Final HERA-2 Combined PDF Paper:

"some tension in fit between low & medium Q² data... not attributable to particular x region" (though there is a kinematic correlation)

Including In(1/x) resummation in fits improves χ^2 and describes difficult low x, low Q2 corner of kinematic plane

NNPDF3.1sx. HERA NC inclusive data

Q² < 1 GeV² data → Best description with Dipole Model, including saturation

All data ($Q^2 > \sim 0.05 \text{ GeV}^2$) are well fitted in (dipole) models that include saturation effects - x dependent "saturation scale", $Q^2_s(x)$

$$\frac{xG_A(x,Q_s^2)}{\pi R_A^2 Q_s^2} \sim 1 \Longrightarrow Q_s^2 \propto A^{1/3} x^{\sim -0.3}$$

Q² < 1 GeV² data → Best description with Dipole Model, including saturation

... at HERA, Q²_s doesn't get above about 0.5 GeV²

→ Saturation may have been observed at HERA ... but not in a region where quarks and gluons are reliable degrees of freedom

HERA's Limitations

- Limited lumi \rightarrow restricts searches and precision at high x, Q^2
- Lack of Q^2 lever-arm at low x \rightarrow restricts low x gluon precision
- No deuterons → limited quark flavour decomposition
- No nuclei → insensitive to nuclear effects

No polarised targets (except HERMES) → limited access to

spin, transverse structure

ALL addressed by complementary proposed future DIS projects

High energy, high luminosity via new e beam + LHC or FCC

11

Electron Ion Collider

- Planned US ep and eA DIS facility
- $20 < \sqrt{s} < \sim 140$ GeV is lower than HERA
- Ion beams and polarised protons
- → physics programme focused on understanding gluons at medium-high x eg through TMDs / GPDs and approaching low x in eA

Understanding the glue that binds us all

Approximate EIC coverage is shaded area.

LHeC / FCC-eh Design: Electron "Linac"

LHeC CDR, July 2012 [arXiv:1206.2913]

Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures

- LHeC ep lumi \rightarrow 10³⁴ cm⁻² s⁻¹
- \rightarrow ~100 fb⁻¹ per year \rightarrow ~1 ab⁻¹ total
- e-nucleon Lumi estimates ~ 10^{31} (3. 10^{32}) cm⁻² s⁻¹ for eD (ePb)
- Similar schemes in collision with protons of 7 TeV (LHeC),
 13 TeV (HE-LHeC) and 50 TeV (FCC-eh)

Low x at LHeC: 2 orders of magnitude extension for ep, 4 for eA ... Testing saturation models at perturbative Q²

- Low x, Q^2 corner of phase space accesses expected saturated region in both ep & eA at perturbative Q^2 according to models

Potential of LHeC and FCC-eh

 $x \rightarrow 10^{-7} \text{ at } Q^2 > 3 \text{ GeV}^2$ for FCC-eh

Very large predicted effects from LL(1/x) resummation

- Future high energy
 DIS is decades away
- Meantime ...

Low x and the LHC

from 2×10^{34} (peak) to 5×10^{34} (levelled)

- LHC will run for another two decades
- Will remain the energy frontier for (a lot) longer
- Has capability to be a much better low-x facility than generally acknowledged

Long Term LHC Schedule

ATLAS, CMS major upgrade

From HERA to LHC

Assuming collinear factorisation and a full understanding of low x dynamics ...

- → Need precise PDFs for interpretation of LHC physics
- → LHC has capability of improving PDF precision
- ... in principle, includes low x PDFs (as well as revealing any new underlying dynamics)

Why low x might cause dangers at the LHC

- Use of PDFs based purely on DGLAP Q^2 evolution at low(ish) x, high Q^2 at the LHC will give incorrect results if there are novel effects in the low x, low Q^2 data ...

- Convergence of solutions after DGLAP evolution may already be misleading at the LHC if there are novel evolution dynamics

Uniquely Favourable Low x Kinematics at LHCb

- "Fixed target-like" forward instrumentation favours processes with asymmetric incoming x values, giving 'mainstream' sensitivity down to $x\sim10^{-5}$
- Even more pronounced in genuine fixed target mode (SMOG at LHCb, AFTER ...)

Theory v Data: inclusive variables at LHC

- PDFs are a vital ingredient in almost all predictions
- Factorisation between ep and pp works well overall!
- From LHC point of view, low-x is a small corner

High / Medium x: PDFs Limit LHC Physics

 $x > ~10^{-1}$

Higgs Cross Section Theory Uncertainties (at N3LO)

0.0

-0.5

LHC (14 TeV)

1.5

2.5

3.0 $M_{\bar{a}} = M_{sa}$ [TeV]

Projected Higgs Coupling **Experimental Uncertainties**

Current PDF Sets → LHC Kinematics & Low x

... e.g. two x=10⁻⁴ partons produce $M_X = 1.7$ GeV at mid-rapidity

- ... low x not very fashionable in LHC collider communnity

There are at Least Some Low-x Sensitive Data

- Global fit ingredients include LHC W, Z, jets, top
- Eg NNPDF 3.1 → some low-x sensitive observables
 - → ATLAS low mass

Drell-Yan

- → LHCb forward W & Z
- But which PDFs are they sensitive to?...
- And what impact do they have?

QUARK SENSITIVE LHC OBSERVABLES

- Electroweak gauge boson production
- Drell Yan below the Z pole

- **W** + charm

Differential W, Z Cross Sections 140 120

- Normalisation (~2% precision) already distinguishes PDF sets
- Differential distributions give added sensitivity, particularly to flavour decomposition ...

120

100

80

ABM12 CT14

 $Z/\gamma^* \rightarrow I^+I$ 66 < m_| < 116 GeV p_. > 20 GeV

- Z p_T dist's also in NNPDF3.1 \rightarrow consistency, but limited impact

LHCb W and Z

- Forward kinematics (2 < η < 4.5) promising
- Full Run 1 data (7TeV and 8TeV) included in PDF fits

2.5

3

3.5

4.5

LHCb W and Z data

Ratios W/Z (or ratios of ratios 8TeV/7TeV) look powerful!

- The data have an impact (see shifts in central values) and

reductions in uncertainties

... BUT almost entirely restricted to large x

Strange Density

- Z differential rapidity distribution at central rapidity sensitive to s+sbar
- Suggested strange not suppressed relative to u,d

Final states with W + charm more directly sensitive to strange

Measurements using fully reconstructed D(*) or leptons associated with jets.

Cross section comparisons at NLO ...

Latest ATLAS / CMS Word on Strange PDFs Including W+jet data

- Marginal agreement between ATLAS and CMS
- Plots extend to genuinely low x ©
- Low x "parameterisation uncertainty" indicative of lack of direct constraints

Drell-Yan Below Z Pole

- Lowest x direct constraints come from DY q qbar \rightarrow l+l- at low m_{II} \rightarrow eg ATLAS dedicated sample down to m_{II} = 12 GeV
- Significant improvement in data description when NLO → NNLO
- MSTW2008 PDFs adequate to describe → well understood?...

Drell Yan at low mass in LHCb

- CONF note 2012 ... still yet to be published?...

- Data extend to m_{ll} = 5 GeV at forward rapidities!
- (NLO) comparisons with previous generations of PDF sets don't show much distinguishing power
- Improved experimental precision may be possible?

SUMMARY OF LHC IMPACT ON QUARKS

- LHC has contributed, mainly through low mass Drell-Yan, particularly to down density
- Primary constraints still come from HERA

GLUON SENSITIVE LHC OBSERVABLES

- Jet production

- Direct Photons

- Top Quarks

- Charm Production

Jet Production

- Gluon-sensitive, though even at low(ish) p_T , $qg \rightarrow qg$ is larger than $gg \rightarrow gg$
- Rates very high
- Limited experimentally by jet Energy Scale Uncertainty and non-perturbative corrections to the jets
- Recent availability of NNLO calculations increases interest

e.g. ATLAS Dijet Data

- Remarkable kinematic range
- ~2% jet energy scale uncertainty
- QCD does impressive job of describing data extending to dijet invariant masses 5 TeV

- BUT kinematic region of mainstream jet analyses is high p_T and large invariant masses \rightarrow not generally well suited to low x physics

e.g. CMS 8 TeV Dijet Data

Dedicated analysis
 in low pile-up sample
 leads to data at
 low(er) p_T and large |η|,
 with improved low-x
 sensitivity

- Also brings bigger non-perturbative corrections and associated uncertainties (hadronization, underlying event)

CMS 8 TeV Dijet Data

- In highest rapidity bins, low p_T data appear to deviate from all (NLO) predictions
- However, deviations are within the (large) experimental and theory uncertainties 37

CMS (NLO) QCD Analysis including jet data

- Some impact at lowest x and parameterization scale, in terms of addressing HERA param'n uncertainty
- Low x influence washes out with DGLAP evolution to large scales
- High x influence survives

What about Direct Photons?

^q Dominant diagram is ug \rightarrow u γ (~60% of cross section)

Previously limited by questionable agreement with NLO (eg Jetphox) ... but NNLO now exists

 \mathcal{M}_{γ}

ATLAS Direct Photons and NNLO

NNLO scale variation uncertainties much reduced and

agreement with data improves

- Still $E_T(\gamma) > 125 \text{ GeV} \rightarrow \text{sensitivity is at high } x > \sim 10^{-2}$
- Extend to lower values? Issues with isolation / γ from frag?)

SUMMARY OF LHC IMPACT ON GLUONS

- (Mainstream) LHC data don't extend (much) below 10⁻³
- Current knowledge basically still comes from HERA
- Is there really no direct probe of gluon at lower x with well-controlled theory?...

Can we Expect More from Mainstream LHC?

- With pile-up ever increasing (→ 200 at HL-LHC), systematics on 'standard candle' measurements unlikely to improve dramatically
- Kinematic range issues could be addressed with dedicated low p_T running and forward focus, but requires lots of work to reach good level of understanding and change of culture (always tensioned against loss of luminosity for searches etc)
- HL-LHC projections in optimistic scenarios suggest some limited further improvement down to $x\sim10^{-4}$ by end of LHC era

New Observables? - Gluons from Charm

- Exclusive production of D mesons is dominated by gg → ccbar
- Scale set by charm mass / $p_T \rightarrow$ LHC data at large rapidity are potentially highly sensitive to gluon

- Limited by charm cross section precision (exclusive D-meson reconstruction or inclusive secondary vertex tagging)
- Theory is NLO and subject to fragmentation uncertatinty
- → Partially offset by use of normalized distributions and ratios of results from different CMS energies
- Hard to do in ATLAS and CMS due to trigger thresholds, but fairly mainstream at LHCb

Study of Impact of Published LHCb D mesons

- 113 + 117 + 1113 is indifinatised data from $\sqrt{3}$ 3, 7 d. 13 lev
- Remarkable impact!
- Reasonable stability w.r.t. theory parameter variation
- "A future analysis at NNLO would be desirable"
- Are experimental issues fully under control?

Ultra-peripheral J/Ψ (Photo)-Production

- [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon (at least for exclusives)

- Long studied in ep at HERA including unfolding σ_T , σ_L ...
- LHC contributes via ultraperipheral collisions, which are also driven by photon exchange
- pA collisions are best-suited due to massively enhanced
 γ coupling to high Z nucleus

Attractions of J/Y Photoproduction

- Clean experimental signature (just 2 leptons)
- → good data from HERA and LHC!

• Scale $Q^2 \sim (Q^2 + M_V^2) / 4 > \sim 3 \text{ GeV}^2$ ideally suited to reaching lowest possible x whilst remaining in perturbative regime

... eg LHC reach extends to:
$$x_g \sim (Q^2 + M_V^2) / (Q^2 + W^2) \sim 10^{-5}$$

Difficulties with J/¥ Photoproduction

- Vector meson wavefuction
- Process requires GPDs (OK for x' << x << 1, but theoretically not at same level)

 Large scale uncertainties in collinear factorization approach (NLO v LO convergence)

Ultraperipheral J/平 Latest from LHC

- JMRT NLO gives excellent 'out-of-box' prediction (k_T facⁿ)
- There is power to add to these data

Interpretation in JMRT

- Remarkable sensitivity to choice of PDF
- Not well established theoretically, but surely worth pursuing!

- JMRT k_T factorization model (attempts to) overcome scale problems etc → see recent Flett et al. paper
- Data uncertainties much smaller than PDF theory uncert's (band)

Any evidence for Saturation?

- No clear evidence in exclusive J/Ψ photoproduction for deviation from monatomic rise with increasing W (decreasing x).
 - Additional variable t gives access to impact parameter (b) dependent amplitudes

... can in principle be studied at LHC ...

Inclusive Diffraction at HERA and Semi-Inclusive (Diffractive) PDFs

- Leading twist and10% of total x-sec
- Huge topic with rich data outputs

Sensitivity to Diffractive Quarks & Gluons

Diffractive cross section measures quark density

$$F_2^D = \sum_q e_q^2 \beta (q + \overline{q})$$

Diffractive Parton Densities (DPDFs)

- ... DPDFs extracted from HERA inclusive (F₂^D) data are PDFs, subject to constraint of leading proton (semi-inclusive facⁿ)
- Recently also extracted at NNLO (Khanpour, H1-prelim)

Testing Factorisation; HERA Jets & Charm

Remarkably good description of all variables over a wide kinematic range

NLO \otimes H12006 Fit-B \times (1+ δ_{bad})

log x_{IP}

H1 Data

H1

[dd] _{dl}x golb/ɒb

Data/NLO

200

100

Dijets in DIS

Charm in DIS

LHeC and FCC-eh would be Transformational

- Quark density directly constrained → 2% precision
- Gluon uncertainty propagated from experimental data few %
- Param'n and other theory uncertainties not yet included

- Fits to simulated LHeC and FCC-eh Neutral Current inclusive diffraction data lead to well-constrained DPDFs down to β =10⁻⁴ - 10⁻⁵

... but in pp(bar)

Spectacular failure in comparison of Tevatron proton-tagged diffractive dijets with HERA DPDFs [PRL 84 (2000) 5043]

... rescattering (absorptive corrections / related to Multi Parton Interactions ...) breaks factorisation ...

`rapidity gap survival probability' ~ 0.1

Gap survival probability needs to be understood to interpret all LHC hard diffraction data.

Diffraction at LHC: Proton Spectrometers Come of Age

LHC experiments (TOTEM, ALFA@ATLAS) have shown that it's possible to make precision measurements and cover wide kinematic range with Roman pots.

e.g. TOTEM operated 14 pots in 2017, with several at full LHC

lumi (~50ps timing and precision tracking detectors) → Sensitivity to subtle new effects eg non-exponential t dep ...

Proton-tagged LHC Diffractive Jets

- Proton tagging removes the double dissociation and non-diffractive backgrounds that limited understanding with previous LHC rapidity gap measurements
- Predictions based on HERA DPDFs require <S²> ~7.4%
- Dynamic Gap Survival Model in PYTHIA (based on Simultaneous description of MPI) reproduces data
 - → Lots more potential here!

Future Diffraction at LHC

- Most of the future diffractive programme will involve Roman Pot tagging in normal running conditions
- In practice this means we will study double tags (pp→ppX), suppressing pile-up background by constraining interaction vertex using precision timing of protons

- Inclusive central production pomeron-pomeron hard scattering with jets, HF, W, Z signatures

- Central Exclusive QCD Production of dijets, γ -jet and other strongly produced high mass systems ... Higgs?...

 $W/Z/\gamma$ - Two photon physics \rightarrow exclusive dileptons, dibosons & anomalous $W/Z/\gamma$ multiple gauge couplings ...

[Dominates at large masses]

First P-tagged yy Results

- CT-PPS fully installed from 2016, AFP from 2017
- Total of 110 fb⁻¹ accumulated by CT-PPS, 81 fb⁻¹ by AFP.
 - → Transformational lumi compared with previous Roman pots
 - → Commissioning and data understanding ongoing
 - → First results obtained (with single tags so far)

LHC Searches for BFKL Dynamics: Jet-gap-jet events

- Gaps between jets are a classic Signature for BFKL dynamics
- Complicated experimentally by difficulty of defining signal, theoretically by rapidity gap survival probability

Jet-gap-jet events and BFKL

Clear signal in case where there is no (visible) radiation in gap

- 8 pb⁻¹ (7 TeV)

 Data

 EEI (|S²| = 0.7%)

 EEI (MPI, |S²| from SCI)

 0.4

 0.4

 0.2

 η|et1 * η|et2 < 0

 Gap region -1 < η < 1

 0 20 40 60 80 100 120 140 160 180

 p|et2 (GeV)
- Comparison with Tevatron shows that gap survival falls with CMS energy
- BFKL-based calculations (EEI and MT) broadly successful with <S²> ~ 1%, including Dynamic model in PYTHIA

Observables Sensitive to Novel Dynamics

- (Very) forward jet, particle production and energy flow
- Mueller-Navelet forward-backward jet pairs
- Azimuthal decorrelations between jets
- Jet broadening

Correlations / p_T ordering of hadrons

LHC Example combining different signatures: Azimuthal Decorrelations between M-N jets

- Choice of Forward-backward highest E_T jets with comparable energy suppresses phase-space for DGLAP evolution
- Sensitivity enhanced at large azimuthal decorrelation due to multiple emissions
- Jets separated by up to $\Delta y = 9.4$ units!
- DGLAP-based models with appropriate tuning (LL parton showers and colour-coherence) can describe data
- LL BFKL model (HEJ) overestimates decorrelations
- Analytic NLL BFKL calculation agrees well with data

Summary

- HERA leaves us with many questions about low x physics
 - Implications of fast-rising gluon?
 - Novel dynamics?
- While we wait for the next energy frontier DIS facility, can we exploit LHC?
- Current mainstream LHC data have some impact on low x quarks, but little on low x gluon
 - Dedicated (big!) effort could address this in some areas
 - New observables (charm-related) may be key?
- Diffraction at LHC bearing fruit → opens up new CEP topics?...

Sooner or later, (FCC-hh), 'mainstream' will have to move to lower x ...