Low x and Diffractive Physics at FCC-eh

FCC Physics & Experiments Workshop CERN 15 January 2020

Paul Newman (University of Birmingham)

- 1) Where does HERA leave us?
- 2) Future DIS facilities
- 3) Inclusive Deep Inelastic Scattering at Small x
- 4) Elastic J/ Ψ Photoproduction
- 5) Diffractive Deep Inelastic Scattering

See also Max Klein (PDFs at FCC-eh) and Nestor Armesto (FCC-eA)

...birth of experimental low x physics

- The only ever collider of electron beams with proton beams:

 $\int s_{ep} \sim 300 \text{ GeV}$

- Extended kinematic range at perturbative Q^2 from x~10⁻² to x~10⁻⁴

Low x Physics is Driven by the Gluon

... knowledge comes mainly from inclusive NC HERA data

The "Pathological" Gluon

- Fast growth of low x gluon appears unsustainable \rightarrow new low x gluon-driven dynamics?

Some evidence for deviations from (NNLO) DGLAP at lowest Q² in Final HERA-2 Combined PDF Paper:

"some tension in fit between low & medium Q² data... not attributable to particular x region (though there is a kinematic correlation) " 4

New Low x effects at HERA?

Energy effects? Including NLL ln(1/x) (BFKL) resummation in fits improves χ² and describes difficult low x, low Q² region (also improves F_L)

5

Density effects?

→ Non-linear gluon
 recombination (gg→g)?
 `Saturation' models
 successful in describing
 HERA data down to
 lowest x and Q² values

n 1/×

HERA's Limitations

- Limited lumi \rightarrow restricts searches and precision at high x, Q²
- Lack of Q^2 lever-arm at low $x \rightarrow$ restricts low x gluon precision
- No deuterons \rightarrow limited quark flavour decomposition
- No nuclei \rightarrow insensitive to nuclear effects
- No polarised targets (except HERMES) → limited access to spin, transverse structure
 in transverse structure
- ALL addressed by complementary proposed future DIS projects

via new e beam + LHC or FCC

6

Low x Kinematics at FCC-eh >2 orders of magnitude extension at fixed Q² for ep (>4 for eA)

- Transformational impact on PDF kinematic range and precision

- FCC-eh phase space extends deep into region where both saturation and BFKL resummation effects expected in both ep & eA at perturbative Q²

- Near hermetic detector acceptance is vital

Potential of FCC-eh to establish BFKL effects

- Extrapolated F_2 and F_L predictions in LHeC and FCC-eh regime based on NNPDF fits to HERA data with and without NLL 1/x resummation

100

- Huge error bands due to lack of current constraints at x < 10⁻⁴
 Data precision will
- distinguish and

¹⁰⁻³ reveal new dynamics

 Extracted PDFs including LHeC and FCC-eh pseudodata highly sensitive to inclusion of NLL 1/x resummation in simulated data

Can Parton Saturation be Established in ep @ LHeC?

• Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 v F_L$ in ep or F_2 in ep v eA

Motivation for Diffraction

- [Low-Nussinov] interpretation as 2 gluon exchange:
- 1) Sensitivity to correlations between partons and 3D structure
- 2) Sensitivity to low x gluon \rightarrow nonlinear saturation / BFKL effects?
- 3) Additional variable t gives access to impact parameter (b) dependent amplitudes
 - → Large t (small b) probes densest packed part of proton?..

Exclusive Diffraction: Elastic J/Ψ Photoproduction (w)

Advantages

Clean 2 lepton experimental signature

• Scale $\overline{Q^2} \sim (Q^2 + M_V^2)/4 > \sim 3 \text{ GeV}^2$ ideally suited to reaching lowest possible x whilst in perturbative regime ... eg LHeC reach extends to: $x_g \sim (Q^2 + M_V^2) / (Q^2 + W^2) \sim 10^{-5}$

Complementarity

Sensitive to Generalised Parton Densities (correlations /3D info, but still measures low x gluon for x' << x << 1 (theoretically not at same level as collinear PDFs)

Complications

- Vector meson wavefuction
- Large scale uncert's in collinear fac'n (NLO v LO convergence)

Current Exclusive J/Y Data

Already well studied in Photoproduction at HERA and

Ultraperipheral Collisions at LHC

No sign of deviation from simple power law behaviour (yet)
 JMRT NLO gives excellent 'out-of-box' prediction (k_T facⁿ)

J/Y from future ep v Dipole model Predictions

Simulated data v "b-Sat" Dipole model - "eikonalised": impact-parameter dependent saturation

- "1 Pomeron": non-saturating

Significant non-linear
 effects expected in LHeC
 kinematic range
 → 'smoking gun'?

J/Y from future ep v Dipole model Predictions

Simulated data v "b-Sat" Dipole model - "eikonalised": impact-parameter dependent saturation

- "1 Pomeron": non-saturating

Significant non-linear
 effects expected in LHeC
 kinematic range
 → 'smoking gun'?

J/Y from future ep v Dipole model Predictions

Simulated data v "b-Sat" Dipole model - "eikonalised": impact-parameter dependent saturation

- "1 Pomeron": non-saturating

- Significant non-linear
 effects expected in LHeC
 kinematic range
 → 'smoking gun'?
- Lack of clear signal at LHC to date \rightarrow features are more subtle, require higher energy and more variables (t, FCC-eh limit Q^{5} , A)

t Dependence of Elastic J/ ψ in ep

- Dips in t distribution proposed as (model dependent) signature of departure from linear evolution

Inclusive Diffraction and Semi-Inclusive (Diffractive) PDFs

- ep→eXp with proton 4-momentum
 barely changed has a leading twist
 contribution ~10% of total DIS x-sec
- Rich topic at HERA (>100 publications)

Diffractive Parton Densities (DPDFs) at HERA

- DPDFs extracted from HERA inclusive (F_2^D) data
- Recently also extracted at NNLO (Khanpour, H1)
- Provide remarkably good description of all final state diffractive observables throughout HERA range

Inclusive Diffraction at LHeC & FCC-eh

→ Diffractive structure in wider (β ,Q²) range than proton (x,Q²) range at HERA

- Low $x_{IP} \rightarrow$ cleanly separate diffraction
- Low $\beta \rightarrow$ Novel low x effects
- High $Q^2 \rightarrow$ Lever-arm for gluon, flavour decomposition
- Large $M_x \rightarrow$ Jets, heavy flavours, W/Z ...
- Large $E_T \rightarrow$ Precision QCD with jets ...

Diffractive PDF Fits at FCC-eh / LHeC

- Combined fits to HERA data and pseudodata from LHeC / FCC-eh (2 fb⁻¹), extrapolated using ZEUS-SJ fits (4 bins per decade in each of ξ , β , Q2)

- Same fitting framework as HERA with factorising x_{IP} dependence and (β, Q^2) dependence from NLO DGLAP fit

Quark and gluon param's $f_k = A_k x^{B_k} (1-x)^{C_k} A_k$, B_k , C_k free

d = u = s = dbar= ubar = sbar Small sub-leading (IR) exchange included at largest x_{IP} GM-VFNS heavy flavour scheme

20

All pseudodata bins at FCC-eh

Data uncertainties:

- 5% uncorrelated systematic
- Statistical uncertainty based on 2fb⁻¹

 $\frac{Fit range:}{Q^{2}_{min}} = 5 GeV^{2}_{21}$ $\xi_{max} = 0.1$

Relative Precision on Diffractive Gluon Density

- Well constrained down to β or z ~ 10⁻⁴ 10⁻⁵
- Experimental precision on quarks <2% (direct from data)
- Experimental precision on gluons few% (scaling viol's)
- No statement on parameterisation or theory uncertainties

More Detail (only gluon shown)

Free IP and IR intercepts (LHeC)

Still open questions: - Parameterisation bias / extrapolation uncertainties - Sensitivity to flavour decomposition - Sensitivity to deviations from pure DGLAP

- Low x QCD is a future frontier \rightarrow emergent phenomena at high parton densities (resummation, saturation, confinement, mass).
- HERA opened up the field and showed central role of gluon
- Some progress at LHC, eg with Ultraperipheral J/ Ψ
- Full understanding and unfolding of subtle, competing effects will require multiple observables at a higher energy ep collider
- FCC-eh (and LHeC) expands phase space, opens new observables and sensitivities at high precision \rightarrow towards a complete picture.
- Most of simulations shown here are "1 day" physics ... 2-5 fb⁻¹