<u>Highlights of</u> <u>HERA and</u> <u>Deep Inelastic</u> <u>Scattering</u>

> Paul Newman (Birmingham)

IOP HEPP Meeting, Oxford 6 April 2009

Basic Deep Inelastic Scattering Processes

 $Q^2 = -q^2$: resolving power of interaction

 $x = Q^2 / 2q.p$: fraction of struck quark / proton momentum

Proton "Structure"?

Physics at the Tevatron and the LHC is about interactions between proton constituents ...

- 2 up and 1 down valence quarks ... and some gluons
- ... and some sea quarks

... and lots more gluons and sea quarks ... → strong interactions induce rich and complex `structure' of high energy proton interactions!

Scattering electrons from protons at \sqrt{s} > 300GeV at HERA data has established proton`structure' over a huge kinematic range parton density functions

 Well established `DGLAP' evolution equations generalise to any scale (for not too small x)

e.g. pp dijets at central rapidity: $x_1 = x_2 = 2p_+ / \sqrt{s}$

fixed

target

10⁻¹

10⁰

Luminosity and Status

Total of ~200 pb⁻¹ e⁻p, 300 pb⁻¹ e⁺p per experiment.
Both lepton polarisation states
~25 pb⁻¹ @ lower E_p = 575, 460 GeV

HERA-I publications coming to an end.
HERA-II searches largely complete
Complicated final states take time (& UK experts) to analyse

The Power of Combinations

 Combinations of H1 & ZEUS cross sections, search limits & parton densities well underway...

Beyond the √2 statistical improvement, effectively cross-calibrate to tackle (different) dominating H1, ZEUS systematics.

Probing 300 GeV eq Interactions with 1 fb⁻¹

A `General' high pt Summary

- No significant
 BSM signals
- Also studied in all possible ΣM intervals ...
- Detectors and physics processes well understood!

The Standard Model & HERA part as good friends!

Electroweak Unification for Space-like Bosons

Neutral Current x-sec

$$\frac{\mathrm{d}\sigma^{NC}}{\mathrm{d}x\,\mathrm{d}Q^2} \sim \alpha_{em}^2 \cdot \left(\frac{1}{Q^2}\right)^2 \cdot \tilde{\sigma}_{NC}$$

 $\frac{\mathrm{d}\sigma^{CC}}{\mathrm{d}x \,\mathrm{d}Q^2} \sim G_F^2 M_W^2 \cdot \left(\frac{1}{Q^2 + M_W^2}\right)^2 \cdot \tilde{\sigma}_{CC}$

• NC and CC cross sections become comparable at EW unification scale (couplings unified)

 \bullet Parton density info encoded in $\widetilde{\sigma}_{\text{NC}}$ and $\widetilde{\sigma}_{\text{CC}}$

H1 intermediate Q^2 data

169pb⁻¹ (final ZEUS high Q²
 e⁻p data) ... 2-3% syst precision

Varying the Lepton Charge and Polarisation

SM (ZEUS-JETS)

 10^{3}

couplings and d/u ratio as $x \rightarrow 1$

10⁴

e.q. e⁺p constrains **d** density

... chiral structure of SM

Q² Evolution and the Gluon Density

Q² evolution of F₂ yields low x gluon, assuming DGLAP
Other observables needed @ high x, where g sensitivity lost

Measuring Heavy Quarks

- Ambiguities in treating heavy flavours in parton densities ...
- Generate dynamically from gluon?
- Treat as an active flavour?
- HF evolution HERA \rightarrow LHC important for $\sigma(W)$, $\sigma(Z)$ in SM
- bbbar \rightarrow H ... e.g. big differences between predictions in SM & high tan β MSSM
- Extensive HERA data (D* tagging, secondary vertices) are used to constrain models
 increasingly sophisticated HF schemes in fits

flavour decomposition of W cross sections

What *is* a Proton?

Caveats:

- No paramⁿ uncertainites
- High x region ...

• NLO DGLAP fits to NC and CC data [to $O(\alpha_s^2)$] used to obtain valence, sea quarks and gluon using HERA-I data alone (zero mass VFNS)

- Improved low x uncertrainties due to inclusion of combined H1-ZEUS data
- Gluon density becomes
 enormous at low x

х

 Broadly consistent with global fits (MSTW, CTEQ)

A Closer Look at High x

• Errors explode at highest x (improves with Q² evolution)

Better precision (MSTW, CTEQ) with TeVatron jets

• Will be better with HERA-II data ...

A Test of the Validity of DGLAP

• At low x, LHC predictions rely on assumption of DGLAP evolution ... yet many novel effects predicted ...

Test overall picture with F_L extracted by varying beam energy.

If gluon dominates, $F_L \sim \alpha_s \times g(x)$ More to come at low Q²

 $Q^2 = 2.0 \text{ GeV}^2$

 $Q^2 = 8.5 \text{ GeV}^2$

 $Q^2 = 35.0 \text{ GeV}$

 $Q^2 = 150.0 \text{ GeV}$

х

 $10^4 10^3 10^2 10^{-1} 10^4 10^3 10^2 10^{-1}$

44⁹9 0

 $Q^2 = 2.5 \text{ GeV}^2$

 $Q^2 = 12.0 \text{ GeV}^2$

 $Q^2 = 45.0 \text{ GeV}^2$

10⁴ 10⁻³ 10⁻² 10¹

H1 Low Q² Data (prel.)

တင္ရဲ႕နာ္ စ ့ စု

Search for Gluon Saturation

 Gluon density cannot rise indefinitely as x decreases (unitarity) DGLAP approximation to QCD may be insufficient e.g. due to neglect of $qg \rightarrow g$ recombination leeer

600000 $Q^2 = 3.5 \text{ GeV}^2$ $Q^2 = 5.0 \text{ GeV}^2$ $Q^2 = 15.0 \text{ GeV}^2$ $Q^2 = 20.0 \text{ GeV}^2$ e.g. from local derivatives with respect to x ... $Q^2 = 60.0 \text{ GeV}^2$ $Q^2 = 90.0 \text{ GeV}$... no evidence for any deviation from a single 10⁴ 10³ 10² 10¹ 10⁴ 10³ 10² 10¹ power law for $Q^2 > 1 \text{ GeV}^2$ х H1PDF-HERA-I Fit (prel.) H1 PDF-HERA-I Fit extrapolated (prel.) H1 Data (prel.)

H1 Preliminary

 $Q^2 = 1.20 \text{ GeV}^2$

(∂ In F₂ /∂ In x)_Q

0.6 0.4

0.2

0.6 0.4 0.2

0.6

0.4 0.2

0.6

0.4

0.2

 $Q^2 \neq 1.5 \text{ GeV}^2$

 $Q^2 = 6.5 \text{ GeV}^2$

 $Q^2 = 25.0 \text{ GeV}^2$

 $Q^2 = 120.0 \text{ GeV}$

HERA-LHC Workshop ... (see also PDF4LHC)

<u>Workshop on the implications</u> <u>of HERA for the LHC</u> (partons, jets, heavy flavours, diffraction, MC tools ...)

807 pages! — (March 2009) Impressum

Proceedings of the workshop HERA and the LHC

2nd workshop on the implications of HERA for LHC physics 2006 - 2008, Hamburg - Geneva

Conference homepage http://www.desy.de/~heralhc

Online proceedings at http://www.desy.de/~heralhc/proceedings-2008/proceedings.html

Examples of Precision on LHC Cross Sections

W Rapidity Spectra:

- 1.5% experimental error in central region (... from HERA-I only!)

- ... a further 3-4% theory uncertainty
- Z/W ratio <2% total uncertainty ...

Higgs cross section:

- PDF uncertainty ~ 3%
- Scale uncertainty ~ 10%

No high energy ep physics approved beyond 2007!..

LHeC: Latest of several proposals to take ep physics into the TeV energy range but with unprecedented lumi! ... achievable at LHC simultaneously with normal pp operation... [JINST 1 (2006) P10001]

A possible DIS future?

Ongoing ECFA-CERN Commissioned workshop www.lhec.org.uk

Contributions welcome!

Kinematics & Motivation for 100 GeV x 7 TeV

Summary

- After 15 years of running, HERA provided a unique data-set.
- ~400 publications, mostly on HERA-I:
 The basis of our knowledge of the LHC initial state
 - Big advances in understanding QCD
 - Searches, EW, spectroscopy ...
- ~100 publications with final precision expected '09-'12 if HERA-II exploited:
 - Factor ~4 in statistics
 - Best detector understanding and performance
 - H1 + ZEUS combinations

Back-Ups Follow

 Q^2 (GeV²)

In 1992, low x physics was an obscure field, known only to Russians!

F_L(x, Q²) v Fixed Target and Indirect Data

Neutral Current Sensitivity to the Quarks

NC cross section depends on 3 structure functions ...

$$\tilde{\sigma}^{NC}(e^{\pm}p) = F_2 \mp \frac{Y_-}{Y_+}xF_3 - \frac{y^2}{Y_+}F_L$$

... where $Y_{\pm} = 1 \pm (1-y)^2$

... and y measures the process inelasticity

- \cdot F₂ dominates throughout most of the phase space
- xF_3 contributes at high Q² (Z exchange) can be obtained from difference between e⁺p and e⁻p cross sections
- \cdot F_L contributes at high y (longitudinally polarised photons)

HERA-only Partons: Combination Power

HERA-only Partons v Global Fits

Q² Evolution via Local Derivatives

DGLAP-based fit provides a good description at level of derivatives from differences between neighbouring points