Latest Constraints on Proton Parton Densities from the LHC

Paul Newman (University of Birmingham)

on behalf of the ATLAS, CMS & LHCb collaborations

Kick-off meeting on Synergies between the Electron-Ion Collider and the Large Hadron Collider 20 June 2022

Proton PDFs from ep Physics only: Final HERA Results (HERAPDF2.0)

- ~2% gluon precision, 1% on sea quarks for x ~ 10⁻² ... BUT ...
- Low x gluon rising in a non-sustainable way at large Q2
- Uncertainties explode above x=10⁻¹

Focusing on High x

Ancient history (HERA v Tevatron)

- Signatures for new physics near kinematic limit can be hidden (or faked!) by imprecise PDFs as $x \rightarrow 1$
- e.g. Apparent excess in large E_T Tevatron jets turned out to be well within uncertainties on high x gluon ...

Focusing on High x

Ancient history (HERA v Tevatron)

- Signatures for new physics near kinematic limit can be hidden (or faked!) by imprecise PDFs as $x \rightarrow 1$
- e.g. Apparent excess in large E_T Tevatron jets turned out to be well within uncertainties on high x gluon ...

HERA's High x Limitations

- HERA's lack of high x precision is due to limited luminosity and 1/Q⁴ factor in cross section + kinematic correlation between x, Q²
- High x, intermediate Q^2 region will one day be filled by EIC.
- For now, the best constraints come from fixed target experiments and (especially) the LHC

Constraining PDFs with LHC Data

- Many pp processes are sensitive to PDFs ...
- Electroweak gauge boson production
- Drell Yan (away from Z pole)
- High pT jet production
- Top Quarks
- Direct Photons
- W+c, Z+c ...

... programme to better constrain PDFs with LHC data both by experimental collaborations and by fitting groups

Theory v Data at LHC

EVIK

High x starting point: **Inclusive jets:**

- High rates, wide kinematic range
- 'Astonishing' agreement between data and (N)NLO QCD over many orders of magnitude in x-section, up to scales with p_T ~2 TeV

PDFs are a vital ingredient in almost all predictions

Factorisation between ep and pp works.

Looking in more Detail ...

e.g. CMS inclusive jets (R=0.4) versus CT14 and others + non-pert, EW coors

- Deviations at typically 5% level, worse at largest p_T
 - → consistent with experiment + theory (including PDF!) systematics.
- What happens if you include the data in PDF fits?...

Recent CMS PDF-Fitting ANALYSIS

- CMS 13 TeV Double-differential inclusive jets with R=0.7
- NC and CC cross sections from HERA
- (Optionally) CMS Triple-differential ttbar cross sections

Fits using xFitter framework, NNLO DGLAP (with Non-Pert + EW corrections)

Parameterisation:

		HERA-only	HERA+CMS
Data sets		Partial $\chi^2/N_{\rm dp}$	Partial $\chi^2/N_{\rm dp}$
HERA I+II neutral current	e^+p , $E_p = 920 \text{GeV}$	378/332	375/332
HERA I+II neutral current	$e^+ p$, $E_p = 820 \text{GeV}$	60/63	60/63
HERA I+II neutral current	e^+p , $E_p = 575 \text{GeV}$	201/234	201/234
HERA I+II neutral current	e^+p , $E_p = 460 \text{GeV}$	208/187	209/187
HERA I+II neutral current	$e^{-}p$, $E_{p} = 920 \text{GeV}$	223/159	227/159
HERA I+II charged current	$e^+ p$, $E_p = 920 \text{GeV}$	46/39	46/39
HERA I+II charged current	e^-p , $E_p = 920 \text{GeV}$	55/42	56/42
CMS inclusive jets 13 TeV	0.0 < y < 0.5	_	13/22
	0.5 < y < 1.0	_	31/21
	1.0 < y < 1.5	_	18/19
	1.5 < y < 2.0	_	14/16
Correlated χ^2		66	83
Global $\chi^2/N_{\rm dof}$		1231/1043	1321/1118

$$\begin{split} x \mathbf{g}(x) &= A_{\mathbf{g}} x^{B_{\mathbf{g}}} (1-x)^{C_{\mathbf{g}}} (1+D_{\mathbf{g}} x + E_{\mathbf{g}} x^2) \\ x \mathbf{u}_{v}(x) &= A_{\mathbf{u}_{v}} x^{B_{\mathbf{u}_{v}}} (1-x)^{C_{\mathbf{u}_{v}}} (1+E_{\mathbf{u}_{v}} x^2), \\ x \mathbf{d}_{v}(x) &= A_{\mathbf{d}_{v}} x^{B_{\mathbf{d}_{v}}} (1-x)^{C_{\mathbf{d}_{v}}}, \\ x \overline{\mathbf{U}}(x) &= A_{\overline{\mathbf{U}}} x^{B_{\overline{\mathbf{U}}}} (1-x)^{C_{\overline{\mathbf{U}}}} (1+D_{\overline{\mathbf{U}}} x), \\ x \overline{\mathbf{D}}(x) &= A_{\overline{\mathbf{D}}} x^{B_{\overline{\mathbf{D}}}} (1-x)^{C_{\overline{\mathbf{D}}}} (1+E_{\overline{\mathbf{D}}} x^2). \end{split}$$

- Addition of jet data constrains high x whilst maintaining χ^2 /dof.
- Tension between high |y| jet data and top data?

PDF Constraints from CMS QCD ANALYSIS

- Inclusive jets have substantial impact on gluon precision at all x relative to CT14 PDFs that already used previous LHC data.
- Singlet quark precision also improves
- Simultaneously, NNLO extraction of strong coupling ...

$$\alpha_s$$
 (m_z) = 0.1188 ± 0.0031

... uncertainty still dominated by scale uncertainty (0.0025)

PDF Constraints from CMS QCD ANALYSIS

- Inclusive jets have substantial impact on gluon precision at all x relative to CT14 PDFs that already used previous LHC data.
- Singlet quark precision also improves
- Simultaneously, NNLO extraction of strong coupling ...

$$\alpha_s (m_z) = 0.1188 \pm 0.0031$$

... uncertainty still dominated by scale uncertainty (0.0025)

ATLAS 'Global' PDF Fit (ATLASpdf21)

- Using xFitter framework, NNLO (QCD) + NLO (EW), fixed $\alpha_s(M_7)=0.118$
- Data included in addition to HERA:

Data set	\sqrt{s} [TeV]	Luminosity [fb ⁻¹]	Decay channel	Observables entering the fit
Inclusive $W, Z/\gamma^*$ [9]	7	4.6	e, μ combined	$\eta_l(W), y_Z(Z)$
Inclusive Z/γ^* [13]	8	20.2	e, μ combined	$\cos \theta$ in bins of $y_{\ell\ell}, M_{\ell\ell}$
Inclusive W [12]	8	20.2	μ	η_{μ}
W^{\pm} + jets [23]	8	20.2	e	p_{T}^{W}
Z + jets [24]	8	20.2	e	$p_{\rm T}^{\rm jets}$ in bins of $ y_{\rm jets} $
$t\bar{t}$ [25, 26]	8	20.2	lepton + jets, dilepton	$m_{tar{t}},p_{\mathrm{T}}^{t},y_{tar{t}}$
$t\bar{t}$ [15]	13	36	lepton + jets	$m_{tar{t}},p_{\mathrm{T}}^{t},y_{t},y_{tar{t}}$
Inclusive isolated γ [14]	8, 13	20.2, 3.2	-	E_{T}^{γ} in bins of η^{γ}
Inclusive jets [16–18]	7, 8, 13	4.5, 20.2, 3.2	-	$p_{\rm T}$ in bins of $ y_{\rm jets} $

- Detailed assessment of correlations between uncertainties in different observables and at different energies and of different χ^2 tolerances

$$xq_i(x) = A_i x^{B_i} (1-x)^{C_i} P_i(x)$$
 with $P_i(x) = (1+D_i x + E_i x^2 + F_i x^3)$ (applying χ^2 saturation technique)

Additional 'negative gluon' term: $xg(x) = A_g x^{B_g} (1-x)^{C_g} P_g(x) - A'_g x^{B'_g} (1-x)^{C'_g}$

ATLAS PDFs (at very different scale from CMS)

2010/1/20	
2010/1620	
1112/1016	
50	
68/55	
208/184	
31/22	
71 = (38 + 33)	
27/47	
6	
105/93	
13/20	
25/29	
207/171	
87 = (16 + 9 + 21 + 41)	

Impact of Different Data Sets

- W and Z data strongly constrain quark densities (and also gluon)
- Jet data primarily reduce gluon uncertainty at large x
- Top data also have an influence and soften high x gluon (mild tension with jets)

Further Constraints: Strangeness Fraction

$$R_s = x(s+\bar{s})/x(\bar{u}+\bar{d})$$

- ATLAS fits constrain strange quark density mainly through inclusive W, Z
- Suggests a small strangeness
 suppression relative to u,d sea at low x.
 compatible with other (global) analyses

Strange Density @ CMS: W + c

[arXiv:2112.00895]

Final states with W + charm are directly sensitive to the strange density at lowest order

CMS measurements using jets with charm tags from secondary vertices of low p_T^{rel} muons:

- Reasonable agreement with NLO fits
- Up to 10%disagreements@ low lepton p_T
- Comparisonsusing NNLOPDFs better?

10⁻²

 10^{-1}

Χ

 10^{-3}

Strange Density CMS v ATLAS

- Including CMS W+c data in fit with HERA data and previous CMS W, W+c data shows significant improvement on strange precision
- Small differences between CMS and ATLAS (constrained by different observables)
- Low x flavour democracy holds at least approximately

Favourable Low and High x Kinematics at LHCb

"Fixed target-like" forward instrumentation (2 < η < 4.5) gives sensitivity to asymmetric incoming x values,

... to $x\sim 10^{-5}$ and at $x\rightarrow 1$

LHCb Z

[arXiv:2112.07458]

- Broad agreement with fixed (NLO) order predictions based on global fits
- FEWZ predictions systematically low at low rapidities for all PDF sets (corresponding to more modest x).
- Further studies on W, top, Drell-Yan, intrinsic charm with Z+c (not shown here).

Back to ATLAS: Quality of Description of Data

Level of agreement within expectations ... but deviations 5-20%

Theoretical Limitations:

Experimental Limitations:

- Hadronisation and Underlying Event
- Missing higher orders (QCD & EW)
- Large logs needing resummations
- Systematics (energy scale ...) 19
- Correlations between measurements

ATLAS v Global Fits at high x

- Progress compared with HERA only fits
- Notably, gluon density hardens compared with HERA, but remains softer than MSHT / CT

- Detailed ATLAS analysis showed importance of proper treatment of correlated uncertainty sources and the power of NNLO

... but there are still tensions and difficulties, particularly at highest x → plenty will remain for EIC to clarify

Simulated impact of EIC

Relative to HERAPDF (lin x scale)

Work done in the context of EIC ATHENA proposal

... EIC will bring significant reduction in uncertainties at large x, beyond LHC - and with reduced theory uncertainty

Final Words

- Current state of the art in collinear proton parton densities is driven primarily by HERA + LHC (with main LHC impact at high x)
- Substantial progress in experimental precision and theoretical description across a wide range of sensitive observables
- Diminishing returns?...
 - > limits in experimental and theoretical precision
 - → ever-increasing pile-up
- → need for independence between PDF constraints and searches near the kinematic limit
- Plenty of space for EIC-LHC synergy in short-to medium term and transformational EIC results in medium-to-long term