Forward Physics: An Experimental Perspective

Prof Paul Newman (University of Birmingham)

H1, ATLAS, LHeC, ePIC experiments

(please call me Paul) Email: p.r.newman@bham.ac.uk

Midsummer School in QCD Saariselkä, Finland June 2024

Lecture 3: Diffraction at the Parton Level

Lecture 3

• Wrapping up Single Diffractive Dissociation at the LHC

- Exclusive Vector Meson production in ep Physics
- Diffractive Deep Inelastic Scattering
- Factorisation breaking between ep and pp
- Future ep Experimental Facilities

Diffractive Channels: & Rapidity Gap Kinematics

- $\xi = \frac{M_X^2}{s}$ is strongly correlated with $\Delta \eta \approx -\ln \xi$ empty rapidity regions ... exploited in SD measurements

[Correlation limited by hadronisation fluctuations]

Rapidity gap cross-sections

Method developed by ATLAS to measure hadron level cross section as a function of $\Delta \eta^F$: forward rapidity gap extending to limit of instrumented range: i.e. including $\eta = \pm 4.9$

... no statement on $|\eta| > 4.9$... large $\Delta \eta^F$ sensitive to SD + low M_Y DD

CMS and ATLAS Rapidity Gap Data

- Using very early LHC runs at 7 TeV (avoiding pile-up) ...

ATLAS: $\Delta \eta^{F}$ extends from $\eta = \pm 4.9$ to 1st particle with p_t>200 MeV

- CMS: $\Delta \eta^{F}$ extends from η = ±4.7 to 1st particle with p_t>200 MeV

Large Gap Region compared with Models

- Large differences between Monte Carlo models due to assumptions on total diffractive cross sections, $\alpha(t)$ and fragmentation modelling.

- Fit to large $\Delta \eta^{F}$ data using $\Delta \eta \sim -\ln \xi$ relation and $\frac{d\sigma}{d\xi dt} \propto \left(\frac{1}{\xi}\right)^{2\alpha(t)-\alpha(t)}$

... still consistent with soft pomeron ...

 $2\alpha(t) - \alpha(0)$

o^{bt}

Current and Future Diffraction at LHC

- Most of the ongoing diffractive programme involves Roman Pot tagging in normal high luminosity running conditions

 \rightarrow Studies with double proton tags (pp \rightarrow ppX)

- Inclusive central production pomeron-pomeron hard scattering with jets, HF, W, Z signatures
- Central Exclusive QCD Production

of dijets, γ -jet and other strongly produced high mass systems ... Higgs?...

 <u>Two photon physics</u> → exclusive dileptons, dibosons & anomalous multiple gauge couplings ... [Dominates at large masses]

 \rightarrow See Valery and Christophe's lectures

Summary of Minimum Bias LHC Physics

- Bulk data at LHC is a laboratory for soft strong interactions
 - Rich phenomenology of non-diffractive processes, but hard to extract underlying dynamics
 - Gaps between jets provide some evidence for BFKL
 - Elastic and diffractive data broadly as expected from soft-Pomeron Regge predictions, but with need for multi-pomeron exchanges.
 - σ_{EL}/σ_{TOT} ~0.25 is close to black disk limit

Diffractive Lepton-Hadron Scattering

Diffractive $\gamma(*)$ p scattering ...

- HERA (and EIC) have favourable kinematics to study X system (photon dissociation)

- Rapidity gap method yields cases where proton remains intact (or dissociates to a very low mass excitation $M_Y < \sim 1.6 \text{ GeV}$): $\gamma(*)p \rightarrow Xp$

By varying Q², the process can be smoothly changed
 ... from a soft process (real photon, Q² → 0)
 ... to a deep inelastic process (highly virtual photon,
 large Q², resolving partons and probing QCD structure)

 \rightarrow Huge topic at HERA (>50 publications each for H1 and ZEUŚ)

Exclusive Vector Meson Production

Relation to low x Physics:

$$x = \frac{Q^2}{W^2 + Q^2 + m_p^2}$$

i.e.
$$W^2 \approx \frac{Q^2}{x}$$

Experimental Selection (examples from H1 -Elastic $J/\Psi \rightarrow \mu\mu$)

- 2-prong decays give beautifully clean events.
- → Select by requiring otherwise empty detector

→ Decay muon direction is determined by $W = \int s_{\gamma p}$

Describing Vector Mesons in terms of Partons

Factorisation theorem

Dipole Models

step 1. γ fluctuation into $q \overline{q}$ dipole step 2. dipole – proton interaction $A = \int dr^2 dz \Psi_{\gamma} \sigma(dip - p) \Psi_{V}$ step 3. pair recombination into VM

- Elastic scattering of $q \overline{q}$ dipole from proton via dipole cross section
- In t-channel picture, exchange is a pomeron

- r LO 2 gluons \vec{q} \vec{v} \vec{r} \vec{r} \vec{r}
- Where hard scales present, dipole size $r \rightarrow 0$ and partonic interpretation of exchange possible

Vector Mesons & the Soft \rightarrow Hard Transition

Behaviour usually parameterised in Regge form based on γ (*)p elastic scsttering

$$\frac{d\sigma_{el}}{dt} \sim \left(\frac{W^2}{W_0^2}\right)^{2\alpha(t)-2} e^{bt}$$

- Recall $\alpha(t)=\alpha(0)+\alpha't$ is the 'effective pomeron trajectory'

- 'Universal' description of soft physics: $\alpha(t)=\alpha(0)+\alpha't \sim 1.08 + 0.25t$
- 'Hard' pomeron (e.g. from BFKL) increases $\alpha(0)$

- e^{bt} empirically motivated - Fourier transform of spatial distribution of interaction $b = b_{dipole} + b_{proton} \rightarrow b_{proton}$ as dipole size $\rightarrow 0$

- Signatures for 'hard' behaviour include increase in $\alpha(0)$ and decrease in b

Photoproduction of Light v Heavy VM

- Increasing M_v leads to harder energy dependences
- $\sigma \alpha W^{\delta}$ with δ =4 α (<t>)-4
- Consistent with soft pomeron for light vector mesons
- For J/ Ψ , effective α (t) ~ 1.20 + 0.13t
- ... c, b mass implies pQCD already valid for J/Ψ , Y at $Q^2 = 0$

Turning the Q² Handle

- J/ Ψ : W & t dependences ~ unchanged already hard at Q²=0
- Light vector meson behaviour evolves from soft to hard (eg ρ^0)

VM Overall Characterisation Summary

- Approximate scaling between different vector meson species in $\mu^2 = (Q^2 + M_V^2)/4$

- t-slope approaches B~ 4-5 GeV⁻² ~ 0.6fm ... strong interaction measures slightly smaller proton radius than EM size \rightarrow hints at 3D structure!

- α ' shows no significant variation with any scale, but is smaller than expected for pure soft-pomeron exchange

HERA Photoproduction of J/Ψ and the Gluon

- QCD models based on 2-gluon exchange describe HERA data well & suggest power to discriminate between gluon PDFs

- Sensitivity limited by large scale uncertainties (NLO-LO convergence)

 \rightarrow No evidence for saturation phenomena in HERA data (single power law dependence persists to highest W)

Relation to LHC: Ultra-peripheral Collisions

Using an LHC proton or (better!) Pb ion as a source of photons allows for photoproduction studies, γp or γPb

Thriving activity, not limited to vector mesons ... sufficient for an entire conference series!

9–13 Jun 2025 Saariselkä, Finland Europe/Helsinki timezone	Enter your search term Q
Overview	The second international workshop on the physics of Ultra Peripheral Collisions will be organized in
Call for Abstracts	Finland in June 2025. More information willbe provided here later.
Participant List	This is an in-person only event.
Important dates	The following research topics will be discussed:
Travel and	
accommondation	 Recent experimental results at HERA, RHIC and LHC The sectional description of evolution photon and photon results are section.
Vanua	 Incorretical description of exclusive photon-proton and photon-nucleus scattering Nuclear PDEs developments using photon-induced data
venue	Nonlinear and gluon saturation effects in photon-nucleus scattering
Local organizing	Hadronization in exclusive processes
committee	 Soft nucleon and nucleus interactions
Previous UPC workshop	 Photoproduction in events with nuclear overlap Photon-photon physics
	 UPCs related to future electron-ion colliders

Ultra-peripheral J/Ψ Photoproduction

$\gamma A \rightarrow J/\Psi A$ cross-sections

- Clear suppressions relative to simply scaled protons, extending to $x \sim 10^{-5}$
- \rightarrow Sensitivity to nuclear PDFs
- \rightarrow Enhanced sensitivity to saturation

Deeply Virtual Compton Scattering (ep \rightarrow eyp)

- DVCS is the classic exclusive process to investigate hadron transverse degrees of freedom and correlations via Generalised Parton Densities ... BUT ...
- HERA measurements were luminosity-limited and cross sections are small (extra γ coupling)
- HERA did not have polarised proton beams

Inclusive Diffraction in Deep Inelastic Scattering

Vector meson production is a 'higher twist' (Q² suppressed) process

There are also 'leading twist' diffractive processes with same Q² dependence as bulk DIS cross section

~10% of DIS events have no forward energy flow

Interpreted as DIS from the (soft) Pomeron ... with potential to measure its partonic structure as a function of $\beta = \frac{x}{\xi}$ and Q^2

Semi-Inclusive QCD Factorisation (Proven for DIS)

'Proton Vertex Factorisation' (Phenomenological)

... completely separate (x_{IP}, t) from (β, Q^2) dependences ('Ingelman-Schlein model')

$$f_{i}^{D}(x,Q^{2},x_{IP},t) = f_{IP/p}(x_{IP},t) \cdot f_{i}^{IP}(\beta = x/x_{IP},Q^{2})$$

DPDFs f_i^{IP} then measure partonic structure of the exchanged system (IP)

Proton Vertex Factorisation & the Effective Pomeron of Diffractive DIS

- x_{IP} (via $\alpha_{IP}(0)$) and t (via b slope) dependence invariant with Q^2 and β

e.g. From H1 FPS data:

 $\alpha_{IP}(0) = 1.10 \pm 0.02 \text{ (exp.)} \pm 0.03 \text{ (model)}$ $\alpha'_{IP} = 0.04 \pm 0.02 \text{ (exp.)} \pm 0.07 \text{ (model)} \text{ GeV}^{-2}$ $B_{IP} = 5.7 \pm 0.3 \text{ (exp.)} \pm 0.9 \text{ (model)} \text{ GeV}^{-2}$

 $\alpha_{IP}(0)$ consistent with soft IP α_{IP} ' smaller than soft IP

→ Dominantly soft exchange
→ Absorptive effects?

10³

 Q^2 (GeV²)

10²

Sensitivity to Diffractive Quarks & Gluons

 Q^2 (GeV²)

 $P_{qg} \otimes g + P_{qq} \otimes g$

 $\mathrm{d}\sigma$

d ln Ç

Diffractive cross section measures quark density

(β)

$$F_2^D = \sum_q e_q^2 \beta (q + \overline{q})$$

Diffractive Parton Densities (DPDFs)

DPDFs extracted through fits to inclusive (& jet) data, assuming NLO/NNLO DGLAP evolution, similarly to inclusive DIS

... dominated by gluon density extending to large momentum fractions, z (as might be expected for object with gg-like 'valence' structure) → Widely used in model-building for LHC and beyond

z Σ(z,Q²) z g(z,Q²) Q² [GeV²] Singlet Gluon 0.2 0.5 8.5 0.25 0.1 **Ouarks** 0 0.2 0.5 20 0.1 0.25 0 0.5 0.2 90 0.1 0.25 0 0.2 0.5 800 0.25 0.1 0 n 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 Z Ζ H1 2006 DPDF Fit B H1 2006 DPDF Fit A (exp. error) (exp.+theor. error) (exp.+theor. error)

e.g. H1

Testing Factorisation; eg HERA Jets & Charm

Remarkably good description of all variables in Diffractive DIS over a wide kinematic range

Charm in DIS

27

Q2 [GeV 2]

jet

jet

р

... but in pp(bar)

- Spectacular failure in comparison of Tevatron proton-tagged diffractive dijets with HERA DPDFs [PRL 84 (2000) 5043]
- ... rescattering (absorptive corrections / related to Multi Parton Interactions ...) breaks factorisation ...

`rapidity gap survival probability' ~ 0.1

Gap survival probability needs to be understood to interpret all LHC hard diffraction data.

Proton-tagged LHC Diffractive Jets

- Predictions based on HERA DPDFs require Gap Survival probability $<\!\!S^2\!\!> = 9 \pm 2~\%$

- Dynamic Gap Survival Model in PYTHIA (Simultaneous description of gap survival and Multi-Parton Interactions) also reproduces data

- Huge potential for further exploration

Crude Mapping Between Physics & Facilities

Summary of Hard Diffraction

- Vector mesons map transition from soft to hard pomeron as hard scales turn on
- J/Ψ photoproduction as 'golden channel' linking HERA and UPCs at LHC, with sensitivity to gluon density and dynamics
 → No evidence for saturation yet
- Leading Twist inclusive diffractive DIS sensitive to partonic structure of object broadly consistent with soft pomeron
 - \rightarrow Dominated by gluons with high momentum fractions
 - \rightarrow Factorisation works beautifully within DIS
 - \rightarrow Gap survival probability of ~10% at Tevatron and LHC
- Much higher luminosities at EIC (and LHeC) can unlock a whole new era of diffractive physics 32