<u>High Energy DIS</u> <u>after HERA?...</u> The LHeC Project

Paul Newman (Birmingham University)

Liverpool Seminar 11 June 2009

... based on the ongoing ECFA/CERN commissioned workshop on ep/eA physics possibilities at the LHC

http://www.lhec.org.uk

<u>... or ... "How to Take</u> <u>Gãoals to Newcastle"</u>

• Much of the inspiration and work behind what I will show has come from people in Liverpool (MK, JBD and others)

- Apologies if I cover ground that is already well known here ...
- I will focus mainly on physics motivation for TeV scale DIS

Basic Deep Inelastic Scattering Processes

 $Q^2 = -q^2$: resolving power of interaction

 $x = Q^2 / 2q.p$: fraction of struck quark / proton momentum

HERA-LHC Workshop ... (see also PDF4LHC)

<u>Workshop on the implications</u> <u>of HERA for the LHC</u> (partons, jets, heavy flavours, diffraction, MC tools ...)

807 pages! — (March 2009) Impressum

Proceedings of the workshop HERA and the LHC

2nd workshop on the implications of HERA for LHC physics 2006 - 2008, Hamburg - Geneva

Conference homepage http://www.desy.de/~heralhc

Online proceedings at http://www.desy.de/~heralhc/proceedings-2008/proceedings.html

Luminosity and Status

- Total of ~200 pb⁻¹ e⁻p, 300 pb⁻¹ e⁺p per experiment.
 Both lepton polarisation states
- ~25 pb⁻¹ @ lower $E_p = 575, 460 \text{ GeV}$

Integrated Luminosity

HERA-I publications coming to an end.
HERA-II searches largely complete
Complicated final states take time (& UK Pro experts) to analyse but

experts) to analyse ... but where is the longer term future?

Currently Approved Future of High Energy DIS

Some LHeC Context

The LHeC is not the first proposal for TeV scale DIS, but it is the first with the potential for significantly higher luminosity than HERA ...

Deep Inelastic Electron-Nucleon Scattering at the LHC^{*}

DESY 06-006 Cockcroft-06-05

J. B. Dainton¹, M. Klein², P. Newman³, E. Perez⁴ F. Willeke²

 ¹ Cockcroft Institute of Accelerator Science and Technology, Daresbury International Science Park, UK
 ² DESY, Hamburg and Zeuthen, Germany
 ³ School of Physics and Astronomy, University of Birmingham, UK
 ⁴ CE Saclay, DSM/DAPNIA/Spp, Gif-sur-Yvette, France ... achievable with a new electron accelerator at the LHC ... [JINST 1 (2006) P10001]

 Limited in energy → but 100 times HERA luminosity
 Polarised hadrons → <u>spin</u> → long-term successor to HERMES, COMPASS?...

- Heavy ions \rightarrow huge step forward for eA kinematic range

[More info at http://web.mit.edu/eicc]

The LHC is the future of the high energy frontier!

Can the unprecedented LHC energy and intensity be exploited for DIS?

"... the LHeC is already half built" [J Engelen]

"... it would be a waste not to exploit the 7TeV beams for ep and eA physics at some stage during the LHC time" [G. Altarelli]

How Could ep be Done using LHC?

 First considered (as LEPxLHC) in 1984 ECFA workshop

• Main advantage: high peak lumi obtainable (~3.10³³ cm⁻² s⁻¹)

• Main difficulties: building round existing LHC, e beam energy (50GeV?) and lifetime limited by synchrotron radiation Previously considered as `QCD explorer' (also THERA)

• Main advantages: low interference with LHC, high E_e (\rightarrow 150 GeV?) and lepton polarisation, LC relation

• Main difficulties: lower luminosity ~3.10³² cm⁻² s⁻¹ (?) at reasonable power, no previous experience exists

Three Possible Lay-outs for Collisions at IP2

 Detailed design within constraints of simuiltaneous ep and pp running and power consumption < 100 MW

• CERN, BNL, Cockcroft, Jlab, SLAC, DESY, Novisibirsk ...

Electrons in the SPL?

SPL (Superconducting Proton Linac) is part of proposed

Linac4

SPS

LHC /

SLHC

CERN p-accelerator upgrade programme. ... could be used with simple transfer line as electron injector or to provide up to ~30 GeV electrons for collisions

R. Garoby, CARE-HHH BEAM07, October'07; L. Evans, LHCC, 20 Feb '08

Ring-Ring Solution

 Benefits from long experience of colliding beam facilites

- By-passes around ATLAS and CMS Based on existing survey tunnels (~1.5km of new tunnelling)
- LHC fixes p beam parameters, e beam matches p shape & sizes
- Fast separation of beams with tolerable synchrotron power requires ~2 mrad crossing angle
- $E_e \sim 50 \text{ GeV}$ for acceptable synchrotron power at 3.10³³ cm⁻¹ s⁻¹

Linac-Ring Solutions

[Zimmermann et al.]

Many lay-outs proposed

Tentative design with acceleration of electrons via racetrack construction

Somewhat reduced lumi ~ 3.10^{32} cm⁻² s⁻¹ for E_e~ 100 GeV at acceptable power consumption \rightarrow energy recovery?

Higher energy (\rightarrow E_e = 150 GeV) possible at reduced lumi

New concept for colliders ... lots of R&D required ...

The Luminosity v Acceptance Question

- \bullet As for HERA-I v HERA-II, low β focusing beam elements around interaction region can improve lumi by a factor ~10
- · However, acceptance near beam-pipe is compromised

compact magnet design required: 10° = 21 cm outer radius of Q1E quadrupole 1° = requires an alternative lattice , optics a

- \rightarrow loss of low x / Q² acceptance
- \rightarrow loss of high M acceptance
- \rightarrow poorer HFS measurements

Beam Scenarios for First Physics Studies

Several scenarios under study ... see later for justification

А	20	7	р	1	1	-	1	10	1	SPL
В	50	7	р	50	50	0.4	25	30	2	RR hiQ ²
С	50	7	р	1	1	0.4	1	30	1	RR lo x
D	100	7	р	5	10	0.9	2.5	40	2	LR
E	150	7	р	3	6	0.9	1.8	40	2	LR
F	50	3.5	D	1	1		0.5	30	1	eD
G	50	2.7	Pb	0.1	0.1	0.4	0.1	30	1	ePb
Н	50	1	р		1		25	30	1	lowEp

config. E(e) E(N) N $\int L(e^{+}) \int L(e^{-}) |Pol| L/10^{32} P/MW$ years type

ep Studies based on a 20-150 GeV electron beam and lumi of 1-10 fb⁻¹ / year

Scenario for Experimental Precision

Requirements to reach a per-mil α_s (c.f. 1-2% now) ...

[Klein, Kluge ...]

The new collider ...

- should be ~100 times more luminous than HERA

The new detector

- should be at least 2 times better than H1 / ZEUS

Lumi = 10^{33} cm⁻² s⁻¹(HERA 1-5 x 10^{31} cm⁻² s⁻¹)Acceptance $10-170^{\circ}$ ($\rightarrow 179^{\circ}$?)(HERA 7-177^{\circ})Tracking to 0.1 mrad(HERA 0.2 - 1 mrad)EM Calorimetry to 0.1%(HERA 0.2-0.5%)Had calorimtry to 0.5%(HERA 1%)Luminosity to 0.5%(HERA 1%)

First `pseudo-data' for F₂, F_L, F₂^D ...produced on this basis ...

Kinematics & Motivation (140 GeV x 7 TeV)

Lepton-quark Bound States

- Leptoquarks appear in many extensions to SM... explain apparent symmetry between lepton and quark sectors.
- Scalar or Vector color triplet bosons carrying
 L, B and fractional Q, complex spectroscopy?
- (Mostly) pair produced in pp, single production in ep.
- LHeC sensitivity (to ~1.5 TeV) similar to LHC, but can determine quantum numbers / spectroscopy (fermion #, spin, chiral couplings ...)

Yukawa coupling, λ

Rp Conserving Supersymmetry

tan β = 10, M₂ = 380 GeV, μ = -500 GeV Squark mass (GeV) 006 008 002 008 009 000 σ in pb, e⁻ p 10 -2 10 [CSSM. Buchmueller 500 et al fit '081 400 300 200 200 300 700 800 900 1000 400 500 600 Selectron mass (GeV) Squark mass (GeV) 008 000 002 000 009 000 σ in pb, e⁺ p -2 10 500 400 10 300 200 200 300 400 500 600 700 800 900 1000 Selectron mass (GeV) (Perez)

$\begin{array}{c} \overbrace{q}{e} \\ \overbrace{\chi}{0} \\ \overbrace{q}{e} \\ \overbrace{\chi}{0} \\ \overbrace{q}{e} \\ \overbrace{\chi}{0} \\ \overbrace{q}{e} \\ \overbrace{q}{e} \\ \overbrace{\chi}{0} \\ \overbrace{\chi}{0}$

Pair production via t-channel exchange of a neutralino.

Cross-section sizeable for $\Sigma M < 1$ TeV i.e. if squarks are "light", could observe selectrons up to ~ 500 GeV, a little beyond LHC? Total cross section for I* productions through GM interaction at LHeC, assuming M*=A

comparison with HERA and LHC

Sizeable CC (WW) x-section ~ few thousand events Strongly dependent on m_H

→ Novel production mechanism → Clean(ish) ... H + j + p_{t}^{miss} → bbbar coupling to light H?

Forward acceptance is an issue

First background studies (jets in CC) underway ...

Complementarity between LHC and LHeC

Contact interaction term introduced in LHC pseudo-data for high mass Drell-Yan

• Even if new physics looks rather different from SM, wide range of high x BSM effects can be accomodated in DGLAP fits due to poor current high x PDF constraints

Better high x precision at high lumi LHeC could disentangle ...

LHeC Impact on High x Partons and α_s

Full NC/CC sim (with systs giving per mil α_s) & NLO DGLAP fit using H1 technology...

... full flavour decomposition possible

... high x pdfs \rightarrow may help clarify LHC discoveries through interpretation of new states?

[Some of highest x improvement from paramⁿ extrapolation]

Cross Sections and Rates for Heavy Flavours

A high x Detector Acceptance Consideration

Considerably more asymmetric beam energies than HERA!

 Hadronic final state at newly accessed lowest x values goes central or backward in the detector ©
 As x grows at fixed Q², hadronic final state is boosted more and more in the forward direction ... and hadrons are needed for good kinematic reconstruction as x gets large & electron method resolution deteriorates

 \cdot Ideally need sensitivity to energy flow in outgoing proton direction for hadrons to ${\sim}1^{\circ}$

LHeC Kinematics for Low x Investigations

 Q^2 / GeV²

Access to $Q^2=1 \ GeV^2$ in ep mode for all $x > 5 \times 10^{-7} \ IF$ we have acceptance to 179°

→Without low β magnets ~ 1 fb⁻¹ / yr ample for most low x studies ... definitive low x facility!

→parton saturation
→novel QCD evolution
→Relations to confinement?
→...

LHeC and Low x Physics

 Somewhere & somehow, low x growth of gluon density must saturate ("high energy catastrophe")

- Non-linear evolution beyond DGLAP, e.g. recombination $gg \rightarrow g$
- Usually characterised in terms of an energy dependent saturation scale, $Q_s^2(x)$, to be determined experimentally
- Saturation scale $Q_s^2 \sim Q_0^2 (A/x)^{1/3}$... factor of 6 for lead

Parton Saturation after HERA?

e.g. Forshaw, Sandapen, Shaw hep-ph/0411337,0608161 ... used for illustrations here

Fit inclusive HERA data using dipole models with and without parton saturation effects

FS04 Regge (~FKS): 2 pomeron model, <u>no saturation</u> FS04 Satn: <u>Simple implementation of saturation</u> CGC: <u>Colour Glass Condensate version of saturation</u>

 All three models can describe data with Q² > 1GeV², x < 0.01
 Only versions with saturation work for 0.045 < Q² < 1 GeV² ... any saturation at HERA not easily interpreted partonically

Some models of low x F₂ with LHeC Data With 1 fb⁻¹ (1 year at 10³³ cm⁻² s⁻¹), 1° detector: stat. precision < 0.1%, syst, 1-3%

[Forshaw, Klein, PN, Soyez]

Precise data in LHeC region, $x > \sim 10^{-6}$

 Extrapolated HERA dipole models ...
 FS04, CGC models including saturation suppressed at low x & Q² relative to non-sat FS04-Regge

... new effects may not be easy to see and will certainly need low Q^2 ($\theta \rightarrow 179^\circ$) region ...

F_L Simulation

Vary proton beam energy as recently done at HERA ?... → example for 1 year ...

E_p (TeV) Lumi (fb⁻¹)

ш

7 1 4 0.8 2 0.2 1 0.05 [0.45 0.01]

... precision typically 5% ... stats limited for Q² > 1000 GeV²

... selected lowest x data compared with 3 dipole models including saturation ...

[Forshaw, Klein, PN, Soyez] $Q^2 = 2 GeV^2$ $Q^2 = 5 GeV^2$ Forshaw & Shaw, FS04-sat Forshaw & Shaw, CGC Soyez, HF-improved CGE 0.2 $Q^2 = 13.5 \text{ GeV}^2$ $Q^2 = 30 \text{ GeV}^2$ 0.5 0.3 02 10⁻³ 10 10⁻⁶ 10 -5 10-5 10 -4 10⁻³ 10 10

Can Parton Saturation be Established @ LHeC?

... effects may not be so large in ep \rightarrow and may be hard to establish unambiguously with F₂ alone ... Two first studies using F₂ and F_L in ep only ...

Including LHeC data in NNPDF DGLAP fit approach ... - Sizeable improvement in error on low x gluon with F_2 & F_L - Saturation effects at LHeC (FSO4-sat) can't be absorbed into NNPDF DGLAP analysis if F_2 and F_L both fitted

Can DGLAP adjust to fit LHeC sat models?

[Forshaw, Klein, PN, Perez]

• Attempt to fit ZEUS and LHeC saturated pseudo-data in increasingly narrow (low) Q^2 region until good fit obtained • Use dipole-like (GBW) gluon parameterisation at Q_0^2

$$xg(x,Q_0^2) = A_g\left(1 - \exp\left[-B_g\log^2\left(\frac{x}{x_0}\right)^{\lambda}\right]\right) (1-x)^{C_g}$$

• Fitting F_2 only, a good fit cannot be obtained beyond the range 2 < Q^2 < 20 GeV² • This fit fails to describe F_L

DVCS and Vector Mesons

With F_2 , F_L , VM in ep and eA could help establish saturation and distinguish between different models which contain it?

• First study of elastic J/Ψ ... large direct sensitivity to gluon dynamics

DVCS study with 1° acceptance & 1fb⁻¹ ... 2-11% statistical errors
Cleaner interpretation in terms of GPDs at larger LHeC Q² values

(Semi)-Inclusive Diffractive DIS

[Studies with 1° acceptance, 1 fb⁻¹]

- •5-10% data, depending on detector
- (D)PDFs / fac'n in much bigger range
- Enhanced parton satn sensitivity?
- $Mx \rightarrow 100 \text{ GeV}$ with $x_{IP} = 0.01 \dots$ $\rightarrow X$ including W, Z, b ...
- Exclusive production of any 1⁻ state

Forward and Diffractive Detectors

- Very forward tracking / calorimetry with good resolution ...
- Proton and neutron spectrometers ...
- Reaching $x_{IP} = 1 E_p'/E_p$ = 0.01 in diffraction with rapidity gap method requires η_{max} cut around 5 ...forward instrumentation essential!
- Roman pots, FNC should clearly be an integral part.
 - Also for t measurements
 - Not new at LHC \bigcirc
 - Being considered integrally with interaction region

With AA at LHC, LHeC is also an eA Collider

• Very limited x, Q^2 and A range for F_2^A so far (unknown for x <~ 10^{-2} , gluon very poorly constrained)

• LHeC extends kinematic range by 3-4 orders of magnitude with very large A

• A ^{1/3} ~ 6 for lead

... opportunity to understand nuclear parton densities in detail

→ $\sim A^{1/3}$ enhanced gluon density → additional satⁿ sensitivity → initial state in AA quark-gluon plasma studies @ LHC / RHIC → relations between diffraction and shadowing → neutron structure & singlet PDF evolution from deuterons

First Detector Concepts - Low x Optimised

- Full angular coverage, long tracking region $\rightarrow 1^{\circ}$
- Dimensions determined by synchrotron radiation fan
- Modular
 Low material budget
 High precision
- Technologies under discussion (lots of ideas!)

First Detector Concepts - High Q² Optimised

- Sacrifice low angle acceptance to beam focusing magnets
- Calorimeter inserts slide inwards
- 2 phases of operation a la HERA?
- Alternatively 2 interaction points (RR only)?

Developing a Combined Function "Magcal"?

[Greenshaw]

- Helium cooled SC magnet.
- Coils in He bath.

Space for calorimeter using He as active component? Could add stainless steel plates as absorber with readout pads:

Use scintilation of liquid He to get signal?... ... Calo is all edges!... \rightarrow What sort of resolution is achievable? \rightarrow What is influence on final beam focus? \rightarrow ?

... also potentially interesting for medical physics and elsewhere?

... could even think of doing the same with solenoids / toroids?

Summary

• LHC is a totally new world of energy and luminosity! LHeC proposal aims to exploit this for TeV lepton-hadron scattering

 \rightarrow ep complementing next generation pp, ee facilities

• Ongoing ECFA/CERN workshop has gathered many accelerator, theory & experimental colleagues

- \rightarrow First debates on machine and detector layout
- \rightarrow Increasingly sophisticated physics studies
- \rightarrow No show-stoppers, but lots still to do in many areas
- Next workshop planned for September '09

 → Conceptual Design Report by early 2010
 → Input to CERN strategy document mid 2010
 → UK seedcorn funding request in near future
- All ideas and involvement welcome!

[More at www.lhec.org.uk]

Back-Ups Follow

Heavy Quarks: $HERA \rightarrow LHC$

• HERA HF information limited by kinematic range and lumi (reasonable charm, some beauty, almost no strange)

 Crucial for understanding LHC initial state for new processes (e.g. bbbar->H) and backgrounds.

• LHC predictions rely strongly on extrapolations and pQCD (e.g. CTEQ: 7% effect on W,Z rates varying HF treatment).

DVCS Measurement

... the classic approach to `generalised parton densities' (GPDs)

... can be tackled as at HERA through inclusive selection of ep \rightarrow ep γ and statistical subtraction of Bethe-Heitler background

Luminosity: Ring-Ring

$$L = \frac{N_p \gamma}{4 \pi e \varepsilon_{pn}} \cdot \frac{I_e}{\sqrt{\beta_{px} \beta_{py}}} = 8.310^{32} \cdot \frac{I_e}{50 m A} \frac{m}{\sqrt{\beta_{px} \beta_{pn}}} cm^{-2} s^{-1}$$

$$\varepsilon_{pn} = 3.8 \mu m$$
$$N_p = 1.7 \cdot 10^{11}$$
$$\sigma_{p(x,y)} = \sigma_{e(x,y)}$$
$$\beta_{px} = 1.8 m$$
$$\beta_{py} = 0.5 m$$

$$I_e = 0.35 mA \cdot \frac{P}{MW} \cdot \left(\frac{100 GeV}{E_e}\right)^4$$

10³³ can be reached in RR $E_e = 40-80 \text{ GeV } \& P = 5-60 \text{ MW}.$

HERA was 1-4 10³¹ cm⁻² s⁻¹ huge gain with SLHC p beam

F.Willeke in hep-ex/0603016: Design of interaction region for 10^{33} : 50 MW, 70 GeV

May reach 10³⁴ with ERL in bypasses, or/and reduce power. R&D performed at BNL/eRHIC

Luminosity: Linac-Ring

$$L = \frac{N_p \gamma}{4 \pi e \varepsilon_{pn} \beta^*} \cdot \frac{P}{E_e} = 1 \cdot 10^{32} \cdot \frac{P / MW}{E_e / GeV} cm^{-2} s^{-1}$$

$$\varepsilon_{pn} = 3.8 \mu m$$
$$N_p = 1.7 \cdot 10^{11}$$
$$\beta^* = 0.15 m$$

$$I_e = 100 mA \cdot \frac{P}{MW} \cdot \frac{GeV}{E_e}$$

LHeC as Linac-Ring version can be as luminous as HERA II:

4 10³¹ can be reached with LR: $E_e = 40-140 \text{ GeV } \& P=20-60 \text{ MW}$ LR: average lumi close to peak

140 GeV at 23 MV/m is 6km +gaps

Luminosity horizon: high power: ERL (2 Linacs?)

Overview of LHeC Parameters

 Table 3: Main Parameters of the Lepton-Proton Collider

Property	Unit	Leptons	Protons
Beam Energies	GeV	70	7000
Total Beam Current	mA	74	544
Number of Particles / bunch	10^{10}	1.04	17.0
Horizontal Beam Emittance	nm	7.6	0.501
Vertical Beam Emittance	nm	3.8	0.501
Horizontal β -functions at IP	cm	12.7	180
Vertical β -function at the IP	cm	7.1	50
Energy loss per turn	${\rm GeV}$	0.707	$6 \cdot 10^{-6}$
Radiated Energy	MW	50	0.003
Bunch frequency / bunch spacing	MHz / ns	40 /	/ 25
Center of Mass Energy	${ m GeV}$	14	00
Luminosity	$10^{33} \text{cm}^{-2} \text{s}^{-1}$	1.	1

Geometric Scaling at the LHeC

Reminder : Dipole models

• Unified description of low x region, including region where Q^2 small and partons not appropriate degrees of freedom ...

- Simple unified picture of many inclusive and exclusive processes ... strong interaction physics in (universal) dipole cross section σ_{dipole} . Process dependence in wavefunction Ψ Factors
- qqbar-g dipoles also needed to describe inclusive diffraction

Azimuthal (de)correlations between Jets

DIS and forward jet:

$$x_{jet} > 0.03$$
 $0.5 < rac{p_{t\,jet}^2}{Q^2} < 2$

x range (and sensitivity to novel QCD effects) strongly depend on θ cut

Similar conclusions for $\Delta \phi$ decorrelations between jets

Some committees were set up ...

Scientific Advisory Committee

Guido Altarelli (Rome) Stan Brodsky (SLAC) Allen Caldwell (MPI Munich) Swapan Chattopadhyay (Cockcroft) John Dainton (Liverpool) John Ellis (CERN) Jos Engelen (CERN) Joel Feltesse (Saclay) Lev Lipatov (St.Petersburg) Roger Garoby (CERN) Rolf Heuer (DESY) **Roland Horisberger (PSI)** Young Kee Kim (Fermilab) Aharon Levy (Tel Aviv) - Richard Milner (Bates) Steven Myers, CERN Alexander Skrinsky Moves Anthony Thomas (Jlab) Steven Vigdor (BNL) Ferdinand Willeke (BNL) Frank Wilczek (MIT)

Steering Committee

Oliver Bruening - (CERN) John Dainton (Cockcroft) Albert DeRoeck (CERN) Stefano Forfe (Milaino) Max Klein - chair (Liverpool) Paul Newman (Birmingham) Emmanuelle Perez (CERN) Wesley Smith (Wisconsin) Bornd Surrow (MIT) Katsuo Tokushuku (KEK) Urs Wiedemann (CERN)

Will dis uss and genise ... after further studies, discussions with CERN accelerator experts and a presentation to plenary ECFA (M Klein) ...

Summary and Proposal as endorsed by ECFA (30.11.2007)

As an add-on to the LHC, the LHeC delivers in excess of 1 TeV to the electron-quark cms system. It accesses high parton densities 'beyond' what is expected to be the unitarity limit. Its physics is thus fundamental and deserves to be further worked out, also with respect to the findings at the LHC and the final results of the Tevatron and of HERA.

First considerations of a ring-ring and a linac-ring accelerator layout lead to an unprecedented combination of energy and luminosity in lepton-hadron physics, exploiting the latest developments in accelerator and detector technology.

It is thus proposed to hold two workshops (2008 and 2009), under the auspices of ECFA and CERN, with the goal of having a Conceptual Design Report on the accelerator, the experiment and the physics. A Technical Design report will then follow if appropriate. ... Nuclear physics also took an interest ...

Electron-Proton/Ion Collider

- Options •
 - Europe
 - LHeC
 - $\vec{e} + \vec{p}$ Collider @ FAIR
 - USA
 - ELIC @ JLab
 - eRHIC @ BNL

- NuPECC working group
 - Tullio Bressani, Jens Jørgen Gaardhøje, G. Rosner (chair), H. Ströher
- Input to
 - NuPECC Report 2009
 - NuPECC's next Long Range Plan
 - Start preparation @ mtg. in Glasgow, Oct. 2008
 - Town meetings, working groups in 2009/10
 - Publication ~2010/11

... a working group structure agreed and convenors invited ...

First ECFA-CERN Workshop on the LHeC Divonne 1.-3.9.08

Accelerator Design [RR and LR] Oliver Bruening (CERN), John Dainton (CI/Liverpool) Interaction Region and Fwd/Bwd Bernhard Holzer (DESY). Uwe Schneeekloth (DESY), Pierre van Mechelen (Antwerpen) Detector Design Peter Kostka (DESY), Rainer Wallny (UCLA), Alessandro Polini (Bologna) New Physics at Large Scales Emmanuelle Perez (CERN), Georg Weiglein (Durham) Precision QCD and Electroweak Olaf Behnke (DESY), Paolo Gambino (Torino), Thomas Gehrmann (Zuerich) Physics at High Parton Densities Nestor Armesto (CERN), Brian Cole (Columbia), Paul Newman (B'ham), Anna Stasto (MSU)

... first workshop took place in September 2008, Divonne ... → Eclectic mix of accelerator experts, experimentalists and theorists (91 participants)

Monday 01 September 2008

Agenda of Divonne Workshop

Registration - Hall d'accueil (12:30-14:00)

Opening - Amphitheatre (14:00-16:30)

- Convenera: Ellis, John

time [id] title	presenter
14.00 [0] Welcome Address	ENGELEN, Jos
14:15 [1] Opening Remarks from ECFA	MEIER, Karlheinz
14:30 [4] Opening Remarks from NuPBCC	ROSNER, Guenther
14:45 [2] Opening Lecture - "Deep Inelastic Scattering in the LHC time"	ALTARELLI, Guido
15:45 [3] Steering Group Report	KLEIN, Max

Accelerator Overview - Autone (17:00-19:05)

time	[id] title	presenter
17.00	[41] Discussion	
17:45	[37] Boundary conditions for the Interaction Region design	SCHNEEKLOTH, Uwe
18:15	[38] Interaction Region design for a ring-ring option	HOLZER, Bembard
18:40	[39] Interaction Region design for a ring-linac option	TOMAS, Rogelio

Physics Overview - Barbilsine (17:00-19:00)

time	[id] title	precenter
17.00	[9] LHeC Physics Overview	BRODSKY, Stan
18.00	[10] QCD in the High Energy Limit	BARTELS, Jochen

Tuesday 02 September 2008

Accelerator & IR Design - Autone (09:00-12:00)

time	[id] title	presenter
09:00	[40] Ring-Linac option: various operation modes and performance reaches	ZIMMERMANN, Frank
09:30	[42] Magnet design issues and options for an LHeC Interaction Region	RUSSENSCHUCK, Stephen
10.00	[43] Operation with large crossing angles and the required CRAB cavity parameters	CALAGA, Rans
10:30	coffee hreak	
11.00	[44] Summary of the main parameters for the ring-ring option	JOWETT, John
11:30	[45] Ring-ring layout and hypers design	BURKHARDT, Helmut

Detector Detign - Barbilaine (09:00-12:00)

time (id) title	presenter
09:00 [62] Introduction and sension organization	POLINI, Alessandro KOSTKA, Peter WALLNY, Rainer
09:15 [63] Silicon Pixel detectors for Tracking	WERMES, Norbert
10:00 [64] RD50 and nilicon radiation hardness	MOLL, Michael
10:30 coffee break	
11.00 [65] Present & Future Collider Triggers	SMCTH, Wesley
11:20 [66] Trigger and displaced vertexing (CDF SVT)	CERRI, Alessandro
11:40 [67] The CMS Hadron Calorimeter and upgrade scenarios	SKUJA, Andrin

QCD and Low x ep Observables and PDF: - Amphitheatre (09:00-12:00)

time	[id] title	presenter
09:00	[11] Precision Physics with Parton Distributions	VOGT, Andreas
02:30	[12] Structure Functions and PDFs stifrom LHeC	KLED, Mex
09:50	[13] Neural network approach to parton distributions	ROJO-CHACON, Juan
10:10	[14] Expectations for slpha_a	KLUGE, Thomas
10:30	coffe break	
11.00	[15] Heavy Flavour and Jet Observables at the LHeC	BEHNICE, Olaf
11:20	[17] More Low-x Observables at the LHeC	NEWMAN, Paul
11:40	[16] Forward Jeta/Parton Cascade Dynamics at LHeC (the)	2.280, Harmen

Accelerator & IR & Detector - Autone (14:00-16:00)

inne	[id] title	presenter
4.00	[49] Active magneta	GREENSHAW, Tim
14:20	[48] Magnet Options for LHeC detector	TEN KATE, Herman
4:40	[46] e-RHIC machine supects	LITVINENKO, Vladimir

16:30	[26] Higgs -> b liber Coupling at LHC	KOAY, Suz Ann
16:50	[80] Higgs cross sections at LHeC	KLEIN, Uta
17:10	[27] Backgrounds to Higgs production at the LHeC	KUZE, Manahiro
17:30	[28] Drell-Yan, new physics and high x PDFs	PEREZ, Emmanaelle
17:50	[29] Electroweak precision physics before and after LHC	DEGRASSI, Giaseppe

Low x ep and eA Physics at LHC and LHeC - Barbilaine (16:30-19:00)

time	(id) title	presenter
16:30	[32] Low x QCD with protons and nuclei at LHC	D'ENTERRIA, David
16:50	[33] What to expect on low x from ATLAS	CAMPANELLI, Mario
17:10	[34] From ep to AB Collisions	ARMESTO, Neskor
17:30	[36] Prompt photons as a tool for modear POFs.	ARLEO, Francois
17:50	[35] Concluding discussion and plans on low a	

Wednesday 03 September 2008

Reports from Working Groups - Amphitheatre (09:00-12:30)

time	[id] title	presenter
09:00	[56] Fhysics at High Parton Densities (ep and eA)	ARMESTO, Néstor NEWMAN, Paul
09:30	[57] Precision Investigations of QCD and Electroweak Interactions	BEHNIKE, Olaf
10:00	[58] New Physics at Large Scales	WEIGLEIN, Georg
10:30	coffice break	
11:00	[59] Detector Design	POLINI, Alessandro WALLNY, Rainer KOSTKA, Peter
11:30	[60] Interaction region and Forward/Backward Detectors	HOLZER, Bernhard
12:00	[61] Accelerator Design	BRUNING, Oliver

15:00 [47] IR Design for the e-RHIC project	MONTAG, Christoph
15:20 [50] IR Design proton optics	HOLZER, Bembard
15:40 [51] IR Design: electron optics	KLING, Alexander

New Physics at the LHeC - Barbilaine (14:00-16:01)

time	(id) title	presenter
14:00	[18] Introduction	PEREZ, Emmanuelle
14:30	[19] Excited Fermiona	TRINH, Nguyet
15:00	[20] Single Leptoquiek Production in pp	PAPADOPOULOU, Theodors
15:30	[30] Single Top Production	BRANDT, Gerhard

Parton Saturation at the LHeC - theory and experiment - Amphithestre (14:00-16:00)

time	[id] title	presenter
14:00	[21] Ohen density in BFKL DAF-Pomeron at HERA and its implication for LHC and LHeC	KOWALSKI, Henri
14:20	[22] Saturation effects in final states and total cross sections due to CCFM with absorptive boundary	KUTAK, Krzyszkof
14:40	[23] 5D tiny black holes and perturbative saturation	SABIO VERA, Agustin
15:00	[24] Establishing/Islaifying saturation at LHeC	ROJO-CHACON, Juan
15:20	[25] Establishing/Eduifying parton saturation in low x op at LHeC	NEWMAN, Paul

Accelerator & IR Design - Autone (16:30-19:00)

tinue	[id] title	presenter
16.30	[74] Space requirements for cavities, Klystrons and power converters in the LHC bannel/bypass areas	LINNECAR, Trevor
16:50	[75] Synergies of the required LHeC R efforts with other existing projects	NN
17:10	[76] Polarisation	BARBER, Deamond
17:30	[77] Double Quaid Design	PAOLONI, Eugenio BETTONI, Simona
17:50	[78] Synchrotron Light	NAGORNY, Boris
18:10	[79] Dissussion	

Detector design - Foyer des artistes (16:30-19:00)

time	[id] title	presenter
16:30	[71] Gomip gazerita pixel detector R&D	KOFFEMAN, Eb
17.00	[72] CALICE calorimeters for the ILC	SIMON, Frank
17:30	[73] Detector Design WG open discussion	NN

... in this example, high x PDF uncertainties reduce sensitivity to compactification scales from 6 TeV to 2 TeV for 2XDs

Can Parton Saturation be Established @ LHeC?

... effects may not be so large in ep \rightarrow and may be hard to establish unambiguously with F₂ alone ... A^{1/3} amplification in gluon in eA (~6 for Pb) may be needed ... Two first studies using F₂ and F_L in ep only ...

Saturation effects at LHeC (FS04-sat) cannot be absorbed into NNPDF1.0 DGLAP PDF analysis if F_2 and F_L both fitted

[Rojo]

π Structure with Leading Neutrons

Also relevant to absorptive corrections, cosmic ray physics ...

Linac-Ring Solutions

[Zimmermann]

... lots of R&D required ...

First Detector Concepts

Muon chambers (fwd,bwd,central)

Coil (r=3m l=8.5m, 2T)

Central Detector

Hadronic Calo (Fe/LAr) El.magn. Calo (Pb,Sc) GOSSIP (fwd+central)

Pixels Elliptic pipe (~3cm)

> Fwd Calorimeter (down to 10°)

Lepton low β magnets FwdHadrCalo

Bwd Spectrometer (down to 170°)

Lepton low β magnets Spacal (elm, hadr)

L1 Detector: version for hiQ² Physics

→ 2 interaction points / experiments?
→ 2 phases of single experiment (a la HERA)?
→ Other ideas

First Detector Concepts

Muon chambers (fwd,bwd,central)

Coil (r=3m l=8.5m, 2T)

[Return Fe not drawn]

Central Detector

Hadronic Calo (Fe/LAr) El.magn. Calo (Pb,Sc) GOSSIP (fwd+central)

[Gas on Slimmed Si Pixels] [0.6m radius for 0.05% * pt in 2T field] Pixels Elliptic beam pipe (~3cm)

Fwd Spectrometer (down to 1°)

Tracker Calice (W/Si) FwdHadrCalo

> Bwd Spectrometer (down to 179°)

Tracker Spacal (elm, hadr)

Max Klein LHeC ICFA08

L1 Detector: version for low x Physics

To be extended further in fwd direction. Tag p,n,d. Also e,y (bwd)

Is HERA Finished? - H1 high pt Summary

The Standard Model & HERA part as good friends!

high Q^2 coverage in DIS

• HERA + QCD factorisation \rightarrow parton densities in full x range of LHC rapidity plateau

 Well established `DGLAP' evolution equations generalise to any scale (for not too small x)

e.g. pp dijets at central rapidity: $x_1=x_2=2p_+ / \sqrt{s}$