Diffractive Factorisation & Rapidity Gap Survival at HERA

Paul Newman (University of Birmingham)

PER AD ADDIA ALTA

Forward Physics @ LHC Manchester 14 / 12 / 09

Supported in part by IPPP, Durham

Low x ep Physics & Diffraction

• Low x physics, as revealed by HERA, is the physics of very large gluon densities...

Associated with a large
(> 10%) diffractive content

... partonic structure of diffraction
... tests of new QCD factorisation ideas
... relation to non-linear evolution (low x satⁿ)
... related to gap survival / underlying event

• Vital input to diffraction at the LHC ...

Diffractive DIS Kinematics

Standard DIS variables ...

× = momentum fraction q/pQ² = $|\gamma^* 4$ -momentum squared|

Additional variables for diffraction:

- t = squared 4-momentum
 transfer at proton vertex
- x_IP = fractional momentum
 loss of proton
 (momentum fraction IP/p)
- $\beta = x / x_{IP}$ (momentum fraction q / IP)
- z_{IP} = generalisation of β beyond QPM (momentum fraction g / IP or q / IP)

ZEUS v H1 Proton-tagged Data ... presented as $\sigma_r^{D(3)}(\beta, Q^2, x_{IP}) = F_2^{D(3)} - \frac{y^2}{Y_1} F_L^{D(3)} \sim F_2^{D(3)}$

- All available data used by both collaborations
- H1 HERA-II data (156 pb⁻¹) improve stats by factor of 20 and reach higher Q²
- Fair agreement
 (combined norm uncertainty ~10%)

Normalised LRG Comparison H1 v ZEUS

Final ZEUS LRG data (62 pb⁻¹) reach new level of statistical precision

... Overall 13% H1-ZEUS difference within normalisⁿ errors ... Good shape agreement in most of phase space (high, low β ?)

Proton Vertex Factorisation

• Variables describing proton vertex (x_{IP} , t) factorise from those at photon vertex (β , Q²) to good approximation for Q² >~ 5 GeV²

• Model proton vertex in terms of effective IP trajectory:

<u>ZEUS</u>

 $\alpha_{IP}(0) = 1.11 \pm 0.02(\text{stat.}) \pm 0.02(\text{syst.}) \pm 0.02(\text{model})$

 $\alpha'_{IP} = -0.01 \pm 0.06(\text{stat.}) \pm 0.06(\text{syst.})$

<u>H1</u>

$$\alpha_{IP}(0) = 1.12 \pm 0.01(\exp.) \pm 0.02(\text{model})$$

 $\alpha'_{IP} = 0.06 \pm 0.13$

 $\alpha_{\text{IP}}(\text{O})$ consistent with soft pomeron, α_{IP}' smaller

ZEUS

Diffractive Parton Densities

• β ,Q² dependence interpreted in terms of Diffractive Parton Densities (DPDFs), measuring partonic structure of exchange

- At fixed x_{IP} , F_2^D measures quarks, dF_2^D / $dlnQ^2$ gluons
- Parameterise and fit z_{IP}
 dependences of DPDFs.
- Q² evolution from NLO DGLAP equations with massive charm (H1) or GM VFNS (ZEUS)
 - Singlet quarks to ~5%,
 - Gluon to ~15% for z <~ 0.1, ... growing fast at higher z

New ZEUS DPDFs from Inclusive Data

- Gluon dominates

- Reasonable agreement with H1 up to large uncertainty on high z gluon

Describing other diffractive DIS processes

H1 Displaced Track Data

H1 2006 DPDF Fit A

H1 D^{*} Data ZEUS D^{*}

------ H1 2006 DPDF Fit B

... explained by rescattering / absorption

... photoproduction jets as the perfect control experiment?...

Global suppression ~0.5 needed for NLO calculations

DPDF uncertainties small at low z_{IP} , but explode at high z_{IP} (highest z_{IP} bin even beyond range of DPDF fits)

Ratios to H1 Fit B, with μ_{f} , $\mu_{r} = p_{t}$: H1: $S^{2} = 0.54 \pm 0.01(\text{stat.}) \pm 0.13(\text{scale})$

ZEUS: S² about 0.9 ... hmmm!

- Good shape description \rightarrow no significant difference between high / low x_{γ} !
- H1: E_t^{jet1} > 5 GeV ... suppression by factor ~2
- ZEUS: E_t^{jet1} > 7.5 GeV ... little or no suppression

E_T Dependence

Some evidence for a dependence of gap survival probability on $E_{\rm T}$

Both collaborations consistent with no suppression @ $E_{\rm T}$ > 10 GeV

Direct contribution remains unsuppressed (but subject to hadronisation migrations).

New KKMR Ideas [hep-ph/0911.3716]

Suppression factor 0.34 applies to Hadron-like (VMD) part of photon structure only \rightarrow Expect S² = 0.34 only at very low x_y < 0.1

Point-like (anomalous) part of photon structure has a smaller suppression

 \rightarrow Expect less suppression at intermediate x_{y}

→ Possible mechanism to generate E_T dependence of S² via inhomogeneous term in DGLAP E_T evolution (small effect?) S² ~ 0.75 - 0.85 for E_T > 7.5 GeV

 $S^2 \sim 0.7 - 0.8$ for $E_T > 5$ GeV

Agrees better with data ... no full quantitative analysis yet

- After 15 years of running, HERA provided unique diffractive data.
- Proton vertex factorisation with $\alpha_{\rm IP}(t) \sim 1.11 (+ \delta t) \& b_{\rm IP} \sim 6 \ GeV^{-2}$ is good model for the 'soft' physics
- DPDFs well constrained & tested in DIS, can be applied at LHC
- Dijet photoproduction data still provide a challenge to theoretical understanding of gap survival
- More precision still expected, especially from HERA-II

Summary

Diffractive to Inclusive Ratios

ww

0.04

0.02

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

8.0

0.9

X.,

... a la CDF, measures ratio of diffractive gluon (convaluted with flux) to inclusive gluon ... full or partial cancellation of photon PDFs, scale uncertainites, jet energy scales ...

• x_{γ} dependence sensitive to absorption / gap survival, as well as differences between diffractive and inclusive phase space ...

• e.g. Kaidalov et al.

Phys. Lett. B567 (2003) 61.

Inclusive Photoproduction Dijet Cross Sections

 Measured in same kinematic range with same method as diffractive cross sections

...

• Acceptance corrections using PYTHIA (CTeQ5L, GRV-GLO)

→ describes low E_T data only with inclusion of underlying event model (multiple interactions) & large hadronisation corrections

... introduces a large uncertainty

Diffractive to Inclusive Ratios

 $z_{IP} < 0.8$ cut to reduce sensitivity to DPDF uncertainties

- · Comparisons only with RAPGAP/PYTHIA ratios so far
- Dominant feature of distributions is phase space
- Large influence of adding multiple interactions

Factorisation, DIS Dijets & the high z Gluon

• Fit A, B describe diverse diffractive DIS data Dijet data dominantly at large z_{IP} ... distinguish between `fit A' & `fit B' • Include jet data in fit $z_{\mathbb{P}} \rightarrow H1 2007 \text{ Jets' DPDFs}$

z

Comparisons between Methods

- LRG selections contain typically 20% p diss
- No significant dependence on any variable
- Similar compatibility with Mx method
- ... well controlled, precise measurements

Relation to Central Exclusive Production

HERA input to 'Central Exclusive Production'

- -Unintegrated gluon density
- Gap survival constraints
- DPDFs for non-exclusive background