

Low x Physics is Driven by the Gluon

... knowledge comes mainly from inclusive NC HERA data

The "Pathological" Gluon

- Fast growth of low x gluon appears unsustainable \rightarrow new low x gluon-driven dynamics?

Some evidence for deviations from (NNLO) DGLAP at lowest Q² in Final HERA-2 Combined PDF Paper:

"some tension in fit between low & medium Q² data... not attributable to particular x region (though there is a kinematic correlation)" 3

New Low x effects at HERA?

Energy effects? Including NLL ln(1/x) (BFKL) resummation in fits improves χ² and describes difficult low x, low Q² region (also improves F_L)

Density effects?

 → Non-linear gluon recombination (gg→g)?
 ... `Saturation' models successful in describing HERA data down to lowest x and Q² values n 1/×

Low x Kinematics at LHeC and FCC-eh >2 orders of magnitude extension at fixed Q² for ep at LHeC

- Transformational impact on PDF kinematic range and precision - to $x \sim 10^{-5}$ or lower.

- Near hermetic detector acceptance is vital

Potential of LHeC & FCC-eh to establish BFKL

- Extrapolated F_2 and F_L predictions in LHeC and FCC-eh regime based on NNPDF fits to HERA data with and without NLL 1/x resummation

100

- Huge error bands due to lack of current constraints at x < 10⁻⁴
 Data precision will
- distinguish and
- ¹⁰⁻³ reveal new dynamics
- Extracted PDFs including LHeC and FCC-eh pseudodata highly sensitive to inclusion of NLL 1/x resummation in simulated data

Can Parton Saturation be Established in ep @ LHeC?

- → Create LHeC pseudodata including saturation by extrapolating (DGLAP-inproved) GBW model based on fit to HERA data:
- \rightarrow try to fit using pure NNLO DGLAP machinery
- ... Cannot absorb the non-linear effects into the initial conditions

[See also recent study by Nestor et al using BK saturation model]

If this is not a smoking gun: unambiguous observation of saturation will be based on tension between observables: e.g. $F_2 v F_L$ in ep, F_2 in ep v eA, diffractive channels

Motivation for Diffraction

- [Low-Nussinov] interpretation as 2 gluon exchange:
- 1) Sensitivity to correlations between partons and 3D structure
- 2) Sensitivity to low x gluon \rightarrow nonlinear saturation / BFKL effects?
- 3) Additional variable t gives access to impact parameter (b) dependent amplitudes
 - → Large t (small b) probes densest packed part of proton?..

Experimental Remarks

Proton tagging in Roman
Pot detectors evolved since
HERA (e.g. CMS/TOTEM have
14[!], giving exquisite
tracking & timing precision).
→ Need to build into IR design

- Hermetic tracking (& muon?) coverage vital for acceptance to highest W (i.e. lowest x) e.g. muons from exclusive $J/\Psi \rightarrow \mu^+\mu^-$

9

Exclusive Diffraction Example: Elastic J/ Ψ Photoproduction (w)

Favourable Kinematics

Clean 2 lepton experimental signature

• Scale $\overline{Q^2} \sim (Q^2 + M_V^2)/4 > \sim 3 \text{ GeV}^2$ ideally suited to reaching lowest possible x whilst in perturbative regime ... eg LHeC reach extends to: $x_g \sim (Q^2 + M_V^2) / (Q^2 + W^2) \sim 10^{-5}$

3-Dimensional Information

 Sensitive to correlations between parton positions, longitudinal and transverse momenta
 (Generalised Parton Densities)

р

(t)

J/Ψ

р

Complications

- Vector meson wavefuction
- Large scale uncert's in collinear factorization approaches

Impact of LHC Exclusive J/\Psi Data Already well studied in Photoproduction at HERA and

Ultraperipheral Collisions at LHC

No sign of deviation from simple power law behaviour (yet)

J/Ψ from future ep v Dipole model Predictions

Simulated data v "b-Sat" Dipole model - "eikonalised": impact-parameter dependent saturation

- "1 Pomeron": non-saturating

- Significant non-linear
 effects expected in LHeC
 kinematic range
 → 'smoking gun'?
- Lack of clear signal at LHC to date \rightarrow features are more subtle, require higher energy and more variables (t, FCC-eh limit Q^2 , A)

t Dependence of Elastic J/ ψ in ep

- Dips in t distribution proposed as (model dependent) signature of departure from linear evolution

Inclusive Diffraction and Diffractive PDFs

- ep→eXp with proton 4-momentum barely changed has a leading twist contribution ~10% of total DIS x-sec
- (Semi-inclusive) diffractive PDFs extracted from inclusive diffraction describe all aspects of diffractive final states⁴

Diffractive PDF Fits at FCC-eh / LHeC

- Combined fits to HERA data and pseudodata from LHeC / FCC-eh (2 fb⁻¹), extrapolated using ZEUS-SJ fits (4 bins per decade in each of ξ , β , Q2)

- Same fitting framework as HERA with factorising x_{IP} dependence and (β, Q^2) dependence from NLO DGLAP fit

Quark and gluon param's $f_k = A_k x^{B_k} (1-x)^{C_k} A_k$, B_k , C_k free

d = u = s = dbar= ubar = sbar Small sub-leading (IR) exchange included at largest x_{IP} GM-VFNS heavy flavour scheme

16

All pseudodata bins at FCC-eh

Data uncertainties:

- 5% uncorrelated systematic
- Statistical uncertainty based on 2fb⁻¹

 $\frac{Fit range:}{Q^{2}_{min}} = 5 GeV^{2}_{17}$ $\xi_{max} = 0.1$

Relative Precision on Diffractive Gluon Density

- Well constrained down to β or z ~ 10⁻⁴ 10⁻⁵
- Experimental precision on quarks <2% (direct from data)
- Experimental precision on gluons few % (scaling viol's)
- Parameterisation / theory uncertainties not included
- Sensitivity to flavour decomposition still to be evaluated₁₈
- Sensitivity to pure DGLAP still to be evaluated

Summary

- Low x QCD is a future frontier \rightarrow emergent phenomena at high parton densities (resummation, saturation, confinement, mass).
- HERA opened up the field and showed central role of gluon
- Some progress at LHC, eg with Ultraperipheral J/ Ψ
- Full understanding and unfolding of subtle, competing effects will require multiple observables at a higher energy ep collider
- LHeC and FCC-eh expand phase space, open new observables and sensitivities at high precision \rightarrow towards a complete picture.
- Most of simulations shown here are "1 day" physics ... 2-5 fb⁻¹