Forward Instrumentation from HERA via the LHC to the LHeC:

Paul Newman (University of Birmingham)

- 1) Main LHeC detector
- 2) Acceptances of LHC Roman pots
- 3) LHeC leading protons and neutrons

LHeC Inclusive: Accessing low x at large Q²

- Low x, Q^2 corner of phase space vital to LHeC QCD programme ... accesses expected saturated region in both ep & eA at perturbative Q^2 according to models ... but not by much!...
- Every degree of scattered electron acceptance is precious!

Acceptance Requirements, Final States

- Hadronic reconstruction as far forward as possible for low y kinematic reconstruction, forward jets etc ...

- Multiple silicon disks ensure good tracking performance down to small angles ~ 1°
- Highly performant compact forward end-cap calorimeters

What we Dream of Measuring in Diffraction ...

 ξ (= x_{IP}) =1.8 x 10⁻⁷

Simulated LHeC F₂^D data (Anna Stasto's talk) assumes full efficiency / acceptance

Methods for Diffraction and Elastics

... old slide from diffraction at HERA

Partially still true for LHeC (but proton tagging technology got better and kinematics make rapidity gap methods harder)

Rapidity Gap Selection with LHeC Kinematics

 $-\eta_{max}$ v ξ (= x_{IP}) correlation determined entirely by proton beam energy ... [Recurring theme ... LHeC is like LHC ...]

- LHeC cut around η_{max} ~ 3 selects events with x_{IP} <~ 10^{-3} (cf x_{IP} <~ 10^{-2} at HERA), but misses lots of diffractive physics at largest dissociation masses, M_X

Proton Spectrometers Come of Age

LHC experiments (TOTEM, ALFA@ATLAS) have shown that it's possible to make precision measurements and cover wide kinematic range with Roman pots.

e.g. TOTEM currently operates 14 pots

→Sensitivity to subtle new effects eg non-exponential term in elastic t dependence ...

Second Generation LHC Proton Spectrometers (CT-PPS at CMS and AFP at ALFA)

17/05

10/06 02/07 25/07 18/08 11/09 03/10

26/10 20/11

Day in 2017

9

Double-arm acceptance

 $m(l^+l^-)$ (GeV)

10²

AFP Detectors

<u>Tracking:</u> four slim-edge 3D pixel sensor planes per station (IBL)

- Pixel sizes 50x250 μm
- 14° tilt improves x resolution (hence ξ)
 - \rightarrow $\delta x = 6 \mu m$, $\delta y = 30 \mu m$
- Trigger capability

Timing: 4x4 quartz bars at Cerenkov angle to beam. Light detected in PMTs → expected resolution 25ps

So ... Can we have full acceptance for scattered protons with lots of pots?

- Locations of pots restricted by beam elements
- Scattered proton trajectories blocked by collimators etc
- Sensitive detectors can't approach arbitrarily close to beam

[ATLAS and CMS/TOTEM Roman pot groups work closely with machine group to find acceptable optics year on year ...]

[LHeC interaction region]

Advantages of Roman Pot Technology

M. Trzebiński AFP Detectors

12

Advantages of Roman Pot Technology

Advantages of Roman Pot Technology

Advantages of Roman Pot Technology

Advantages of Roman Pot Technology

Advantages of Roman Pot Technology

Advantages of Roman Pot Technology

Advantages of Roman Pot Technology

Advantages of Roman Pot Technology

thin window and floor (300 μ m)

M. Trzebiński

AFP Detectors

Advantages of Roman Pot Technology

shadow of TCL4 and TCL5 LHC beam collimators

thin window and floor (300 μ m)

M. Trzebiński

4/21

Advantages of Roman Pot Technology

shadow of TCL4 and TCL5 LHC beam collimators

Geometric acceptance:

diffractive protons

thin window and floor (300 μ m)

Acceptance Depends on Location and Orientation of Pot and on beam optics

e.g. complementarity between ATLAS ALFA (vertical approach) and AFP (horizontal approach)

- ALFA is optimised for Elastic scattering with special beam optics
- AFP acceptance for inelastic diffraction with $\xi > 0.02$

Ideas for LHeC Fwd Beamline Instrumentation

... exploiting dependence of exclusive process kinematics only on proton beam ...

Ideas for LHeC Fwd Beamline Instrumentation

... exploiting dependence of exclusive process kinematics only on proton beam ...

Proton Spectrometer based on FP420 ...

The FP420 R&D Project: Higgs and New Physics with

Fig. 50: Top view of one detector section: bellows (1), moving pipe (2), Si-detector pocket (3), timing detector (4), moving BPM (5), fixed BPM (6), LVDT position measurement system (7), emergency spring system (8).

An LHeC Forward

Proton Spectrometer?

- Proton spectrometer in CDR is a copy of FP420 project (proposal for low ξ Roman pots at ATLAS / CMS not yet adopted)
- Approaching beam to 12σ (~250 μ m) tags elastically scattered protons with high acceptance over a wide x_{IP} , t range

- Requires access to beam though cold part of LHC
- Higher ξ from AFP / CT-PPS like pots.
- Lower ξ requires pots very far from I.P. (but may be covered by gaps method)

... but that was for (old) Standard LHC optics ... First Studies with nominal HL-LHC Optics ...

Acceptances for 2x2cm detector @ $15\sigma+0.5$ mm, no collimators

to that now in AFP region

324,420m: Attractive ξ acceptance extending into SM Higgs region and very wide t range at possible deployment points in cold sections

Calculated Mass Acceptances 15σ case

What can be done in eA?

Coherent diffraction has `impossibly' small proton displacement ... $|t| < 0.01 \text{ GeV}^2$ corresponds to $\sim 10^{-4}$ mrad for heavy ion ... Roman pots would be kilometers from interaction point!

Can we use Roman pots nearer to interaction point to detect dissociating beam fragments *inside* the beam-pipe?

- → Identify low mass double dissociation in ep gap method
- → Separate coherent and incoherent processes in eA?

Leading Neutrons

- Crucial in eA, to determine whether nucleus remains intact e.g. to distinguish coherent from incoherent diffraction
- Crucial in ed, to distinguish scattering from proton or neutron
- Forward γ and n cross sections relevant to cosmic ray physics
- Has previously been used in ep to study π structure function

Possible "straight on" space at z ~ 100m

No detailed instrumentation studies yet → learn from LHC again

Leading Neutrons: Solutions from LHC ... needs to be compact and radiation-hard

- ALICE, ATLAS, CMS all use
 tungsten absorber + quartz fibres (Cerenkov). LHCf uses tungsten
 + plastic scintillator in special runs
- Improve hadronic response with dual quartz / scintillator?
- Longitudinal segmentation essential to distinguish neutrons from photons.

Summary / Discussion Points

- Proton beam characteristics entirely drive kinematics of forward / exclusive particle production ... we can learn much of what we need to know from LHC experiments
- More detailed studies with realistic optics (crossing angle?... dipoles?... crab cavities?) are needed!
- Favoured proton detector technology is Si pixels. Challenges:
 - ... Radiation hardness levels for HL-LHC
 - ... `Edgeless' detectors
- Neutron detector is Tungsten + Quartz/Scintillator? Challenges: ... Hadronic response / distinguishing n from γ
- Is Roman pot fragment tagging inside beampipe possible?