

workshop on ep/eA physics possibilities at the LHC

http://cern.ch/lhec

Material Taken from Draft Conceptual Design Report

DRAFT 0.5 CERN, June 1st, 2011

A Large Hadron Electron Collider at CERN

Report on the Physics and Design Concepts for Machine and Detector

LHeC Study Group

- Around 500 pages
- Summarising work of ~200 participants over 5 years
- Nobody works full time on LHeC yet
- Due for release in Autumn 2011

LHeC is the latest & most promising idea to take ep physics to the TeV centre-of-mass scale at high luminosity

Contents

- A brief history of ep Physics
- How to build an ep Collider using the LHC
- Detector considerations
- Physics motivation BSM physics
 - Precision QCD / EW
 - Low x / high parton densities
 - Electron ion collisions
- Timeline and outlook

Electron Scattering Experiments

"It would be of great scientific interest if it were possible to have a supply of electrons ... of which the individual energy of motion is greater even than that of the alpha particle."

[Ernest Rutherford, Royal Society, London, (as PRS) 30 Nov 1927]

<u>1950s</u> <u>Hoffstadter</u>

First observation of finite proton size using 2 MeV e beam

SLAC 1969: Electron Energies 20 GeV

Proposal:

"A general survey of the basic cross sections which will be useful for future proposals"

First Observation Of Proton Structure

DESY, Hamburg

HERA (1992-2007)

... the only ever collider of electron beams with proton beams

Equivalent to a 50 TeV beam on a fixed target proton ~2500 times more than SLAC!

Around 500 pb⁻¹ per experiment

Basic Deep Inelastic Scattering Processes

 $Q^2 = -q^2$:resolving power of interaction

 $x = Q^2 / 2q.p$: fraction of struck quark / proton momentum

Proton "Structure"?

Proton constituents ...

- 2 up and 1 down valence quarks
- ... and some gluons
- ... and some sea quarks

... and lots more gluons and sea quarks ... → strong interactions induce rich and complex `structure' of high energy proton interactions!

Scattering electrons from protons at $\sqrt{s} > 300$ GeV at HERA has established detailed proton structure & provided a testing ground for QCD over a huge kinematic range

... parton density functions

How is the Proton's Energy Shared out?

A proton with high energy

A quark carrying energy fraction, x

Energy carried by quarks and gluons as a function of $x \rightarrow$

At TeV / LHC energies, a proton looks like a lot of gluons

HERA's greatest legacy

Parton densities of proton in a large x range

Some limitations:

- Insufficient lumi for high x precision
- Assumptions on quark Flavour decomposition

- No deuterons ... u and d not separated

- No heavy ions

- H1/ZEUS/joint publications still coming for 1-2 years
- Further progress requires higher energy and luminosity ...

 Well established `DGLAP' evolution equations generalise to any scale (for not too small x)

e.g. pp dijets at central rapidity: $x_1 = x_2 = 2p_t / \sqrt{s}$

M = 10 TeV

v=2

fixed

target

10⁰

10

HERA

10-2

Currently Approved Future of High Energy DIS

How Could ep be Done using LHC?

... whilst allowing simultaneous ep and pp running ...

- First considered (as LEPxLHC) in 1984 ECFA workshop
- Main advantage: high peak lumi obtainable (~2.10³³ cm⁻² s⁻¹)

• Main difficulties: building round existing LHC, e beam energy (60GeV?) and lifetime limited by synchrotron radiation

- Previously considered as `QCD explorer' (also THERA)
- Main advantages: low interference with LHC, high E_e (\rightarrow 150 GeV?) and lepton polarisation, LC relation
- Main difficulties: lower luminosity <10³³ cm⁻² s⁻¹? at reasonable power, no previous experience exists

Accelerator Design

Main design constraint: power consumption < 100 MW

<u>Multi-Lab Involvement</u> Novosibirsk, BNL, CERN, Cockcroft, Cornell, DESY, EPFL Lausanne, Jlab, KEK, Liverpool, SLAC, TAC Turkey, NTFU Norway, INFN ...

Ring-Ring Design

Installation 1m above LHC and 60cm inside

By-passes of existing experiments containing RF

Challenging, but no show stopper yet

Magnets for Electron Ring (CERN, Novisibirsk)

3040 bending dipole magnets

5m long (35cm)² transverse

127 T/m gradient

Compact and light

First prototypes

736 arc quadrupole magnets

Accelerator Design in Linac-Ring Configuration

4 separate designs for 60 GeV electron beam (CERN, Jlab, BNL)

- 500 MeV injection
- Two 10 GeV linacs,
- 3 returns
- Energy recovery in same structures (94%)?

More ambitious: Pulsed single 140 GeV Linac 31.5 MV/m (ILC)

Design Parameter Summary

			5
electron beam	RR	LR	LR
e- energy at IP[GeV]	60	60	140
luminosity [10 ³² cm ⁻² s ⁻¹]	17	10	0.44
polarization [%]	40	90	90
bunch population [10 ⁹]	26	2.0	1.6
e- bunch length [mm]	10	0.3	0.3
bunch interval [ns]	25	50	50
transv. emit. γε _{x.v} [mm]	0.58, 0.29	0.05	0.1
rms IP beam size $\sigma_{x,y}$ [µm]	30, 16	7	7
e- IP beta funct. $\beta_{x,y}^{\prime\prime}$ [m]	0.18, 0.10	0.12	0.14
full crossing angle [mrad]	0.93	0	0
geometric reduction H _{hg}	0.77	0.91	0.94
repetition rate [Hz]	N/A	N/A	10
beam pulse length [ms]	N/A	N/A	5
ER efficiency	N/A	94%	N/A
average current [mA]	131	6.6	5.4
tot. wall plug power[MW]	100	100	100

KR= Ring -	- Ring
_R =Linac	-Ring

proton beam	RR	LR		
bunch pop. [10 ¹¹]	1.7	1.7		
tr.emit.γε _{x.v} [μm]	3.75	3.75		
spot size $\sigma_{x,y}$ [μ m]	30, 16	7		
β* _{x,y} [m]	1.8,0.5	0.1		
bunch spacing [ns]	25	25		

Include deuterons (new) and lead (exists)

10 fb⁻¹ per year looks possible

Detector Acceptance Requirements

Access to $Q^2=1$ GeV² in ep mode for all x > 5 x 10⁻⁷ requires scattered electron acceptance to 179°

Similarly, need 1° acceptance in outgoing proton direction to contain hadrons at high x (essential for good kinematic reconstruction)

Experimental Precision Aims

Requirements to reach a per-mille α_s (c.f. 1-2% now) ...

The new collider ...

- should be ~100 times more luminous than HERA

The new detector

- should be at least 2 times better than H1 / ZEUS

	LHeC	HERA		
Lumi [cm ⁻² s ⁻¹]	10 ³³	1-5*10 ³¹		
Acceptance [°]	1-179	7-177		
Tracking to	0.1 mrad	0.2-1 mrad		
EM calorimetry to	0.1%	0.2-0.5%		
Hadronic calorimetry	0.5%	1-2%		
Luminosity	0.5%	1%		

Simulated `pseudo-data' for F_2 , F_L , F_2^D ...produced on this basis

Detector Overview

Calorimeters

Liquid Argon / Tile technologies under study

Tracking Region

- Full angular coverage, long tracking region \rightarrow 1° acceptance
- Technologies under discussion (lots of ideas!)

A GEANT4 Simulated Low x Event

Searches For New Physics

• The (pp) LHC has much better discovery potential than the LHeC (unless electron beam energy can increase to > 500 GeV)

e.g. Expected quark compositeness limits below 10⁻¹⁹ m at LHeC

... big improvement on HERA, but already beaten by LHC in its first year

• However, LHeC is competitive with LHC in cases where initial state lepton is an advantage and offers cleaner final states

• Combined LHC / LHeC info can confirm and clarify new physics

Lepton-quark Resonances

- Leptoquarks appear in many extensions to SM... explain apparent symmetry between lepton and quark sectors.
- Scalar or Vector color triplet bosons
 Carrying L, B and fractional Q,
 complex spectroscopy?
- (Mostly) pair produced in pp, single production in ep.
- LHeC discovery potential for masses <1.0 - 1.5 TeV for 10 fb⁻¹ -Comparable to LHC, but cleaner final states

Yukawa coupling, λ

Determining Leptoquark Quantum Numbers

Single production gives access to quantum numbers:

- fermion number (below) spin (decay angular distributions)
- chiral couplings (beam lepton polarisation asymmetry)

Fermion number F from asymmetry in e+/e-p cross sections

F=2

3 bound

600

10

LHC, 300 fb⁻¹

800

LHeC, E_=70 GeV, 10 fb⁻¹

LHeC, E,=70 GeV, 100 fb⁻¹

LHeC, E = 140 GeV, 1 fb⁻¹

1000

1200

1400

M₁₀ (GeV)

1600

5

F = 0

 $S_{1/2}^L$ leptoquark, $\lambda = 0.1$

Fermion number determination

Much cleaner accessible in DIS

Total cross section for I* productions through GM interaction at LHeC, assuming M*=A

comparison with HERA and LHC

Complementarity between LHC and LHeC

Contact interaction term introduced in LHC pseudo-data for high mass Drell-Yan

- Even if new physics looks rather different from SM, wide range of high x BSM effects can be accomodated in DGLAP fits due to poor current high x PDF constraints
- Better high x precision at high lumi LHeC could disentangle ...

Sizeable CC (WW) x-section \rightarrow Few1000 events / year before cuts Strongly dependent on m_H

→ Novel production mechanism
 → Clean signal: H + j + pt^{miss}

First study with 2 b-tags Backgrounds (jets in NC, CC, top) suppressed with cuts on jet multiplicity, total E_t, event kinematics, missing p_t

~ 100 events / year after cuts?

LHeC Impact on Parton Densities

Full NC/CC sim (with systs giving per mille α_s) & NLO DGLAP fit using HERA technology...

... big impact for both low x (kinematic range) and high x (luminosity)

... full flavour decomposition possible

Using ZEUS fitting code, HERA + LHeC data ... EW couplings free $E_e = 100$ GeV, L = 10+5 fb⁻¹, P = +/- 0.9

Weak mixing angle can also be obtained

Cross Sections and Rates for Heavy Flavours

c.f. luminosity of ~10 fb⁻¹ per year ...

Flavour Decomposition

10

Precision c, b measurements (modern Si trackers, beam spot 15 * 35 μ m², increased HF rates at higher scales). Systematics at 10% level

 \rightarrow beauty is a low x observable! \rightarrow s, sbar from charged current \rightarrow Similarly Wb \rightarrow t

Inclusive Jets & QCD Dynamics

Also differential in Q^2 with high precision to beyond $Q^2 = 10^5 \text{ GeV}^2$

 $\alpha_{\text{s}}\,\text{up}$ to scale ~ 400 GeV

Detailed studies of QCD dynamics, including novel low x effects in regions not probed at HERA and (probably) not at LHC

Low-x Physics and Parton Saturation

- Somewhere & somehow, the low x growth of cross sections must be tamed to satisfy unitarity ... non-linear effects
- Parton level language \rightarrow recombination gg \rightarrow g
- Saturation effects beyond x dependent saturation scale

$$Q_s^2 \sim xg(x)\alpha_s \sim cx^{-\lambda}A^{1/3}$$

• Weak hints at saturation effects @ HERA (but at very low Q²)

Strategy for making the target blacker

LHeC delivers a 2-pronged approach:

Enhance target `blackness' by:
1) Probing lower x at fixed Q² in ep [evolution of a single source]
2) Increasing target matter in eA [overlapping many sources at fixed kine

[overlapping many sources at fixed kinematics ... density ~ $A^{1/3}$ ~ 6 for Pb ... worth 2 orders of magnitude in x]

Extrapolating HERA models of F_2 With 1 fb⁻¹ (1 year at 10³² cm⁻² s⁻¹), F_2 stat. < 0.1%, syst, 1-3% F_L measurement to 8% with 1 year of varying E_e or E_p

NLO DGLAP uncertainties explode @ low x and Q²

• 'Modern' dipole models, containing saturation effects & low x behaviour derived from QCD give a much narrower range

• ... we should be able to distinguish between different models for the onset of saturation effects

Fitting for the Gluon with LHeC F₂ and F_L

Including LHeC data in NNPDF DGLAP fit approach ...

... sizeable improvement in error on low x gluon when both LHeC F_2 & F_L data are included.

... but would DGLAP fits fail if non-linear effects present?

Can Parton Saturation be Established in ep @ LHeC?

Simulated LHeC F_2 and F_L data based on a dipole model containing low x saturation (FS04-sat)...

... NNPDF (also HERA framework) DGLAP QCD fits cannot accommodate saturation effects if F_2 and F_L both fitted

Conclusion: clearly establishing non-linear effects needs a minimum of 2 observables ... $(F_2^c \text{ may work in place of } F_L)$...

Exclusive / Diffractive Channels and Saturation

v* vv

р

e

mis

V

X (M_x)

р

р

- 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon
- 2) Additional variable t gives access to impact parameter (b) dependent amplitudes
 - \rightarrow Large t (small b) probes densest packed part of proton?

Elastic J/ Ψ Photoproduction: Golden Channel?

- `Cleanly' interpreted as hard 2g exchange coupling to qqbar dipole ... enhanced sensitivity to low x gluon
- c and c-bar share energy equally, simplifying VM wavefunction
- Clean experimental signature (just 2 leptons)
- ... LHeC reach extends to $x_g \sim 6.10^{-6}$ at $Q^2 \sim 3 \text{ GeV}^2$

(MNRT etc) $X_g \sim (Q^2 + M_V^2) / (Q^2 + W^2)$ $Q^2 = (Q^2 + M_V^2) / 4$

• Simulations of elastic J/ $\Psi \rightarrow \mu\mu$ photoproduction \rightarrow scattered electron untagged, 1° acceptance for muons (similar method to H1 and ZEUS)

Simulation of J/ ψ Photoproduction

e.g. "b-Sat" Dipole model
"eikonalised": with impact-parameter dependent saturation
"1 Pomeron": non-saturating

• Significant non-linear effects expected in LHeC kinematic range.

 Data shown are extrapolations of HERA power law fit for E_e = 150 GeV... → Satⁿ smoking gun?

What is Initial State of LHC AA Collisions?

- Very limited x, Q² and A range for F₂^A so far (fixed target experiments covered x >~ 10⁻²)
- LHeC extends kinematic range by 3-4 orders of magnitude with very large A

Current Knowledge: Nuclear Parton Densities

R_i = Nuclear PDF i / (A * proton PDF i)

- Nuclear parton densities don't scale with A due to Fermi motion, shadowing corrections ...
- All parton types poorly constrained for x < 10⁻²
- Gluon density essentially unknown

Study of Impact of e-Pb LHC data

• LHeC ePb F₂ measurement has huge impact relative to current uncertainties

 Striking effect on quark sea and gluons in particular

• High x gluon uncertainty remains large

1.4

1.2

1.0

0.8

0.6

0.4

0.2

 $R_{i}^{Pb}(x,Q^{2}=1.69 \text{ GeV}^{2}$

Schedule and Remarks

- Aim to start operation by 2022 [new phase of LHC]
 → cf HERA: Proposal 1984 Operation 1992. LEP: Proposal 1983 Operation 1989
- The major accelerator and detector technologies exist
- Cost is modest in major HEP project terms
- Steps: Conceptual Design Report, 2011 Evaluation within CERN / European PP/NP strategy If positive, move towards a TDR 2013/14

Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Prototyping- testing						_					
				Produce compo	ction ma	ain					
Civil e				engineer	ing						
								Install	ation		
										Opera	tion

Summary

• LHC is a totally new world of energy and luminosity! LHeC proposal aims to exploit it for lepton-hadron scattering ... ep complementing LHC and next generation ee facility for full Terascale exploration

• Ongoing ECFA/CERN/NuPECC workshop has gathered many accelerator, theory & experimental colleagues

 \rightarrow Conceptual Design Report

Fig. 1. Distance scales resolved in successive lepton–hadron scattering experiments since the 1950s, and some of the new physics revealed.

• CDR being finalised. Will be available by Autumn

[More at http://cern.ch/lhec]