

Inclusive Diffraction & Factorisation Tests at HERA

... the quasi-elastic scattering of the virtual photon in the proton colour field ...

Presented by P.Newman (University of Birmingham) on behalf of the H1 & ZEUS Collaborations

> PHOTON '09, DESY 14 May 2009

Several new (April '09) results with improved precision:
 → Final ZEUS HERA-I diffractive DIS data
 → ZEUS QCD fit → Diffractive Parton Densities
 → First H1 HERA-II proton (& neutron) tagged data
 → First H1 F_L^D measurement (E_p = 575, 460 GeV data)

Low x Physics & Diffraction

• Low x physics, as revealed by HERA, is the physics of very large gluon densities...

Associated with a large
(> 10%) diffractive content

... enormous progress in understanding diffraction in terms of partons ... testing new QCD factorisation ideas ... related to non-linear evolution (low x satⁿ)

... related (gap survival) to underlying event ... related to confinement ...

... see also S. Kananov on vector mesons

Diffractive DIS Kinematics Standard DIS variables ...

× = momentum fraction q/p
$$Q^2 = |\gamma^* 4$$
-momentum squared|

Additional variables for diffraction ...

- t = squared 4-momentum
 transfer at proton vertex
- x_IP = fractional momentum
 loss of proton
 (momentum fraction IP/p)

 $\beta = x / x_{IP}$ (momentum fraction q / IP) Most generally $ep \rightarrow eXY$...

In most cases here, Y=p, (small admixture of low mass excitations)

Signatures and Selection Methods

`Large Rapidity Gap' adjacent to outgoing (untagged) proton η_{max}

<u>The methods have very</u> <u>different systematics!</u>

ZEUS v H1 Proton-tagged Data ... presented as $\sigma_r^{D(3)}(\beta, Q^2, x_{IP}) = F_2^{D(3)} - \frac{y^2}{Y_+} F_L^{D(3)} \sim F_2^{D(3)}$

• All available data used by both collaborations

• H1 HERA-II data (156 pb⁻¹) improve stats by factor of 20 and reach higher Q²

Fair agreement
 (combined norm
 uncertainty ~10%)

Comparisons between Methods

- LRG selections contain typically 20% p diss
- No significant dependence on any variable
- Similar compatibility with Mx method ... well controlled, precise measurements

S S

GeV²

6

GeV²

Se S

Normalised LRG Comparison H1 v ZEUS

Final ZEUS LRG data (62 pb⁻¹) reach new level of statistical precision

... Overall 13% H1-ZEUS difference within normalisⁿ errors ... Good shape agreement in most of phase space (high, low β ?)

(x_{IP},t) Dependences: Exchanging `Nothing'

Diffractive DIS reminiscent of (soft) diffractive hadronic scattering
Vacuum exchange `pomeron' (IP) introduced in Regge theory context

• In $\gamma^* p \rightarrow XY$, virtual photon resolves structure of exchange ... dominant contribution looks similar to soft IP

• Often discussed loosely in this language ... can extract effective IP trajectory: $\alpha_{IP}(0) + \alpha'_{IP}t$

X_{IP} Dependence (ZEUS Leading Proton Data)

- 1st diffractive structure function measurement at multiple t values
- Low x_{IP} / high β ... falling (IP-like) behaviour
- High x_{IP} / low β ... rising (IR-like) behaviour

 \cdot Compatible $x_{\rm IP}$ dependence in each t bin

Consistent with soft IP intercept

Proton Vertex Factorisation & Partons

• Variables describing proton vertex (x_{IP} , t) factorise from those at photon vertex (β , Q²) to good approximation ...

• β ,Q² dependence interpreted in terms of Diffractive Parton Densities (DPDFs), measuring partonic structure of exchange

• Parameterise and fit β dependences of DPDFs. For Q² evolution, use NLO DGLAP equations with massive charm (H1) or GM VFNS (ZEUS)

• Exclude data with low M_X (higher twists) or low Q^2 (NLO insufficient?)

X

ZEUS

QCD Fits to New ZEUS LRG Data

• At fixed x_{IP} , F_2^D measures quarks, dF_2^D / $dlnQ^2$ gluons

7FUS

•	ZEUS LRG 99	-00 —— ZEUS (prel.) DPDFS incl	– – – ZEUS (pre	el.) DPDFS incl (ex	(trapolated)
₹_ 0.06	β = 0.006	β=0.015	β=0.038	β = 0.091	β= 0.217	
0.04	_			· •_ ·	† "	$Q^2 =$
× 0.02		•				2.5 Gev
0.06		β = 0.020	β=0.052	β = 0.123	β=0.280	
0.04			[<u>.</u>]		İ~	3.5 GeV ²
0.02						
0.06		- β = 0.026 -	-β=0.066 -	- β = 0.153 ·	β=0.333 ·	
0.04				-	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.5 GeV ²
0.06	β = 0.014	β = 0.032	β=0.079	β = 0.180	β= 0.379	
0.04	_ ·				. · ·	5.5 GeV ²
0.02		· •				
0.06	β = 0.016	β = 0.037	β=0.092	β = 0.206	β= 0.419	
0.04						6.5 GeV ²
0.02						
0.06	β = 0.021	- β = 0.048 -	- β= 0.117	- β = 0.254	β=0.486	
0.04	· · ·	 .		- -	***	8.5 GeV ²
0.06	β = 0.029	β=0.066	β=0.158	β = 0.324	β = 0.571	
0.04	·	·	· _ ·		- Mana -	12 GeV ²
0.02		· · · · · ·	· · · · ·	• • • •		
0.06	β = 0.038	β=0.086	β=0.200	β=0.390 ·	β_= 0.640 ·	
0.04	- - -		-			16 GeV ²
0.02						
0.06	β = 0.052	β=0.115 -	·β=0.256 ·	β = 0.468	β=0.710	
0.04	+ 1			The sea		22 GeV ²
0.02		[<u> </u>	
	10 ⁻³ 10 ⁻² 10 ⁻¹ br>X _{IP}					

		 ZEUS LRG 9 	9-00 — ZEU	S (prel.) DPDFS i	ncl	
ຄົວ.06 ບັນດີ ກີ່ຍີ່ 0.04	β = 0.070	β = 0.151	β=0.319	β = 0.545	β= 0.769	Q ² = 30 GeV ²
0.06 0.04 0.02	β = 0.091	β=0.191	β=0.385	β=0.615	β= 0.816	40 GeV ²
0.06 0.04 0.02	β = 0.111	β=0.228	β=0.439	β = 0.667	β= 0.847	50 GeV ²
0.06 / ² 0.04 0.02	δ β = 0.140 2	β=0.278	β=0.504	β = 0.722	β= 0.878	65 GeV ²
0.06 / ² 0.04 0.02	β = 0.175	β = 0.335	β=0.570	β = 0.773	β= 0.904	85 GeV ²
0.06 / ² 0.04 0.02	δ β = 0.216	-β=0.394 -	β=0.632	β=0.815 -	β= 0.924	110 GeV ²
0.06 / ² 0.04 0.02	β = 0.259	β=0.453	β=0.686	β=0.848 -	β= 0.940	140 GeV ²
0.06 / ² 0.04 0.02	β = 0.316	β = 0.523	β=0.743	β=0.881 -	β= 0.954	185 GeV ²
0.06 / ² 0.04 0.02	β=0.389	β=0.601	β=0.799	β=0.911 -	β=0.966	255 GeV ²
/ ²	10 ⁻³ 10 ⁻² 10 ⁻¹ br>X _{IP}	I				

ZEUS

Good description of all data with (fitted) Q² > 5 GeV²

New ZEUS DPDFs from Inclusive Data

• z = incomingmomentum fraction of parton (= β for quarks, > β for gluons)

• Quarks & low z gluons to few %, poor high z gluon constraint.

- Gluon dominates

- Reasonable agreement with H1 up to large uncertainty on high z gluon

Some Features of the DPDFs

• High z behaviour of quarks looks similar to photon structure function

- Overall ratio of quarks to gluons is about 70:30, similar to inclusive PDFs at low x
- Diffractive and (low x) inclusive DIS give complementary windows of the QCD vacuum consequences of an underlying gluon exchange?

Describing other diffractive DIS processes

e

p

As well as inclusive x-sections and jets in DIS, DPDFs describe diffractive charged current, charm, particle flow & spectra ...

Х_{IP}F₂^{D(3)}CC 10'0 ί_ΡΓ₂^{D(3)}cc 0.02 (a) $O^2 = 4 \text{ GeV}$ (b) O²=25 GeV² x₁₂=0.004 x₁₀=0.004 0.01 0.005 0 10 -2 10⁻¹ 10 -3 10 -3 10 -2 10⁻¹ (_PF₂⁰⁽³⁾cc ί_ΡΓ₂^{D(3)}cc 0.02 (d) O²=25 GeV² (c) $O^2 = 4 \text{ GeV}^2$ 0.04 x_{re}=0.02 x₁₀=0.02 'EUS diff D' 98-00 0.01 ZEUS (pref.) DPDF S incl+dijets 0.02 0 0 10⁻¹ 10⁻³ 10⁻¹ 10⁻³ -2 -2 10 10 ß

ZEUS

First F_L^D Measurement

A new test of the diffractive gluon density in DIS ...

$$\sigma_r^{D(3)}(\beta, Q^2, x_{IP}) = F_2^{D(3)} - \frac{y^2}{Y_+} F_L^{D(3)} \qquad F_L^{D(3)} \sim \alpha_s xg(x) + \delta q(x)$$

... sensitivity to F_L^D @ highest y (lowest β) ... vary beam energy to change y at fixed β , x_{IP} , Q^2 ... 21 pb⁻¹ @ Ep = 920 GeV, 11pb⁻¹ @ 575 GeV, 6pb⁻¹ @ 460 GeV ... y < 0.9 \rightarrow scattered electron energy cut \rightarrow 3.4 GeV!

First F^D Measurement

- F_L^D measured ~ 3σ from zero
- Compatible with all predictions based on DGLAP fits to F_2^{D}
- F_L^D / F_2^D (~ g / q) compatible with F_L / F_2 @ low x?
- $R^{D} = \sigma_{L}/\sigma_{T} = F_{L}^{D} / (F_{2}^{D} F_{L}^{D}) \sim 0.5$ with big errors

.. meanwhile in pp(bar) ...

Tevatron effective DPDFs from dijets show strong factorⁿ breaking compared with HERA DPDFs ... `gap survival' factor $S^2 \sim 0.1$

... explained by rescattering / absorption

... photoproduction jets as the perfect control experiment?...

Cross Section Differential in $E_{\rm T}$

 \cdot Suggestions of harder Et dependence in data than NLO theory ... thus of E_t dependent gap survival probability

- Could rescattering effects for photon depend on Et, not x_{γ} ?
- · Non-trivial kinematic correlations ... final conclusion pending!

- After 15 years of running, HERA provided unique diffractive data.
- Agreement in detail between different analysis methods
- Proton vertex factorisation with $\alpha_{\rm IP}$ (t) ~ 1.11 (+ δ t) & b_{\rm IP}~6 GeV⁻² is good model for the 'soft' physics
- DPDFs well constrained & tested ... measuring the QCD vacuum development of a basic `hard' gluon exchange?
- Solid conclusions on diffractive dijet photoproduction will lead to new insights on gap survival / photons

Summary

 Global fit of LRG (at My = mp) v FPC normalisation yields factor 0.83 +- 0.04, compatible with (tuned) MC expectations
 Acceptable agreement after applying this factor (despite differently defined x-secs at high M_x)

Normalised LRG Comparison H1 v ZEUS

First Step towards Combined LRG Data

- Set normalisation (arbitrarily) to H1 \rightarrow >10% uncertainty
- Swim H1 points to ZEUS Q² values using H1 fit B
- Pending correlated systematic details in ZEUS data, make a simple weighted average of H1 / ZEUS at each data point based on quadratic sum of stat and (non-norm) syst errors
- (For now) restrict to $x_{IP} = 0.003, 0.01$ (best agreement)

... results generally pulled towards more precise ZEUS data ... many points have 3-4% precision (excluding normalisation)

First Combined LRG Data (Newman, Ruspa)

No big conflicts with existing DPDFs (quarks @ low, high β ?)

Q² Dependence and the Gluon Density

 $\sigma_r^{D(3)}$ measures diffractive quark density. Its dependence on Q^2 is sensitive to diffractive gluon density.

000000

Extract $d\sigma_r^D/dlnQ^2$ by fitting data at fixed x, x_{TP}

• Low β evolution driven by $g \rightarrow qq$... strong sensitivity to gluon • High β , relative error on derivative grows, $q \rightarrow qg$ contribution to evolution becomes dominant ... sensitivity to gluon is lost!

Factorisation, DIS Dijets & the high z Gluon

😸 H1 data

H1 data

• Fit A, B describe diverse diffractive DIS data • Dijet data dominantly at large z_{IP} ... distinguish between `fit A' & `fit B' • Include jet data in fit $z_{IP} \rightarrow$ `H1 2007 Jets' DPDFs

Diffractive Charged Current Cross Section

Good agreement with fit prediction (assumes u = d = s = u = d = sand c from BGF) though statistical precision limited so far

F_L^D and Higher Twist at High β ?

Low x similarity of diffractive & inclusive PDFs

 Similar ratios of quarks to gluons reflected in similar
 Q² evolution of inclusive and diffractive cross sections at low x...

• ...Ratio σ_r^D/σ_r ~ independent of Q² at fixed x_{IP} and x.

• ... away from the influence of valence quarks, PDFs and their evolution is driven only by QCD ... same for proton, pomeron, pion, photon ...?

...`universal structure of QCD vacuum?

X-Section Differential in z_{IP}

$$z_{IP} = \frac{\sum_{jets} (E + p_z)}{2E_p x_{IP}}$$

Global suppression ~0.5 needed for NLO calculations ... confirms previous result

Best shape description from Fit B

DPDF uncertainties small at low z_{IP} , but explode at high z_{IP} !

Highest z_{IP} bin is even beyond the range of DPDF fits, so predictions should be taken very cautiously

