

Paul Newman Birmingham University

Lepton-hadron collider based on the high lumi LHC
Can we add ep and eA collisions to the existing LHC pp, AA and pA programme?

September 7th-11th 2015 Palaiseau, France e γ*(Q²) (X) p

6th International Conference on Physics Opportunities at an Electron-Ion Collider

LHeC / FCC-he Context

Lepton-hadron scattering at the TeV scale ...

LHeC: 60 GeV electrons x LHC protons & ions → 10³⁴ cm⁻² s⁻¹ → Simultaneous running with ATLAS / CMS sometime in HL-LHC period

FCC-he: 60 GeV electrons x 50 TeV protons from FCC

Baseline[#] Design (Electron "Linac") LHeC CDR, July 2012 [arXiv:1206.2913]

Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Two 10 GeV linacs,
- 3 returns, 20 MV/m

• Energy recovery in same structures [CERN plans energy recovery prototype]

- ep lumi \rightarrow 10³⁴ cm⁻² s⁻¹ \rightarrow ~100 fb⁻¹ per year \rightarrow ~1 ab⁻¹ total
- eD and eA collisions have always been integral to programme
- e-nucleon Lumi estimates ~ 10³¹ (10³²) cm⁻² s⁻¹ for eD (ePb)

[#] Alternative designs based on electron ring and on higher energy, lower luminosity, linac also exist

Recent Developments

LHC programme runs to >2035. Longer term at CERN? \rightarrow FCC?

... CERN-sponsored ongoing work to evaluate how LHeC fits in.

→ Further develop physics aims, accelerator & detector, both LHeC & FCC

- \rightarrow Continue building collaboration
- \rightarrow Design ERL test facility @ CERN

ERL Test Facility:

- Test centre for accelerator development, LHeC prototype

- Most ambitious design (2 x 150 MeV linacs, 3 passes \rightarrow 900 GeV) has significant physics potential of its own (10⁴⁰ cm⁻² s⁻¹ fixed target) ... EW parameters, proton radius, photonuclear physics, dark photons ...

- Conceptual Design Report by end 2015

Physics Overview

- Next experimental facility to see Higgs?

 Enhanced PDF precision enhances
 LHC new heavy
 particle sensitivity by
 ~0.5 TeV & transforms
 LHC precision at EW
 scale

- Elucidates new low x dynamics in both ep and eA

Revolutionises
 knowledge of nuclear
 structure

Detector Design Overview

- Present size 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
- 1° tracking acceptance in both forward & backward directions
- Forward & backward beam-line instrumentation integrated

Why PDFs? \rightarrow Uncertainties for LHC Higgs

= scale & PDF

contributions

sector become limited by knowledge of PDFs in HL-LHC era

 $\frac{\Delta\mu}{\mu}$

$PDFs \rightarrow New High Mass LHC Particles$

- Gluino signature is excess @ large invariant mass
- Both signal & background uncertainties driven by error on gluon density ... essentially unknown beyond ~2 TeV

- BSM sensitivity through excess in high mass Drell-Yan limited by high x antiquark uncertainties as well as valence

PDF Constraints at LHeC

Full simulation of inclusive NC and CC DIS data, including systematics \rightarrow NLO DGLAP fit using HERA technology...

- Medium $x \rightarrow$ precision Higgs and EW²
- High $x \rightarrow$ new particle mass frontier
- Per-mille experimental α_s precision
- Full Flavour decomposition

Cross Sections and Rates for Heavy Flavours

Flavour Decomposition

Precision c, b measurements (modern Si trackers, beam spot 15 * 35 μ m², increased HF rates at higher scales). Systematics at 10% level

anti-strange density [3^j]

 \rightarrow beauty as a low x observable \rightarrow s, sbar from charged current

(Assumes 1 fb⁻¹ and - 50% beauty, 10% charm efficiency - 1% uds \rightarrow c mistag probability. - 10% c \rightarrow b mistag)

С

LHeC Impact on LHC Higgs PDF Unc'ty

... needs N³LO Higgs calculation

... needs improved $\alpha_{\rm s}$ measurement (also @ LHeC)

c.f. experimental uncertainty ~0.25%

Higgs Production at LHeC & FCC-eh

Higgs in e^-p	CC - LHeC	NC - LHeC	CC - FHeC
Polarisation	-0.8	-0.8	-0.8
Luminosity [ab ⁻¹]	1	1	5
Cross Section [fb]	196	25	850
Decay BrFraction	N_{CC}^{H}	N_{NC}^{H}	N_{CC}^{H}
$H \rightarrow b\overline{b}$ 0.577	113 100	13 900	$2\ 450\ 000$
$H \rightarrow c\overline{c}$ 0.029	5 700	700	123 000
$H ightarrow au^+ au^-$ 0.063	12 350	1 600	270 000
$H \rightarrow \mu\mu$ 0.00022	50	5	1 000
$H \rightarrow 4l$ 0.00013	30	3	550
$H \rightarrow 2l 2 \nu$ 0.0106	2 080	250	45 000
$H \rightarrow gg$ 0.086	16 850	$2\ 050$	365 000
$H \rightarrow WW = 0.215$	42 100	5 150	915 000
$H \rightarrow ZZ$ 0.0264	5 200	600	110 000
$H \rightarrow \gamma \gamma$ 0.00228	450	60	13 10 000
$H \rightarrow Z\gamma$ 0.00154	300	40	6 500

A Direct Higgs Study

Study of H \rightarrow bbbar in generic simulated LHC detector

- 80% lepton polarisation enhances signal by factor 1.7
- Signal/Background ~ 1-2

Events

100

80

... ongoing studies of LHeC $H \rightarrow$ ccbar and FCC-eh possibilities

• CC $h \rightarrow bb$

low Q^c bbi

Simulation of H \rightarrow bb Measurement at the LHeC, 100fb⁻¹

Low-x Physics and Parton Saturation

Somewhere &
 somehow, the low
 x growth of cross
 sections must be
 tamed to satisfy
 unitarity ...
 non-linear effects

→ new high density, small coupling parton regime of non-linear parton evolution dynamics (e.g. Colour Glass Condensate)? gluon dynamics → confinement and hadronic mass generation

Some limited evidence from HERA, LHC picture (e.g pPb) unclear

LHeC: Accessing saturation region at large Q²

n 1/x

LHeC delivers a 2-pronged approach:

Enhance target `blackness' by: ep 1) Probing lower x at fixed Q^2 in ep [evolution of a single source] DILUTE REGION 2) Increasing target matter in eA [overlapping many sources at fixed kinematics ... Density ~ $A^{1/3}$ ~ 6 for Pb ... worth 2 orders of magnitude in x]

... Reaches saturated region in both ep & eA inclusive data according₁to models

In A

[fixed Q]

DENSE REGION

eA

Establishing and Characterising Saturation With 1 fb⁻¹ (1 month at 10^{33} cm⁻² s⁻¹), F₂ stat. < 0.1%, syst, 1-3% F_L measurement to 8% with 1 year of varying E_e or E_p

- LHeC can distinguish between different QCD-based models for the onset of non-linear dynamics
- Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 v F_L$ in ep or F_2 in ep v eA

Exclusive / Diffractive Channels and Saturation

- [Low-Nusinov] interpretation as 2 gluon
 exchange → enhanced low x gluon sensitivity
- Additional variable t provides impact parameter (b) dependent amplitudes \rightarrow Large t (small b) probes densest region of proton

→ Investigations of exclusive VM production, DVCS, inclusive diffraction & diffractive dijets → Any 1⁻ system with mass up to 250 GeV accessible

V

gðð

р

e.g. J/ ψ Photoproduction v W, t & Q² $\gamma_* \gamma_{\nu}$

Precise kinematic reconstruction from decay μ tracks over wide W and Q² range to |t| ~ 2 GeV²

• Significant non-linear effects expected in LHeC kinematic range

V

р

g g g g

LHeC as an Electron-Ion Collider

Four orders of magnitude increase in kinematic range over previous DIS experiments \rightarrow Wide ranging programme ...

→ Revolutionises knowledge of nuclear partonic structure

 \rightarrow Low x / diffactive eA programme gives additional lens on densely packed, weakly coupled, partons

→Ultra-clean probe of passage of `struck' partons through cold nuclear matter 20

- Studies in context of EPS'09 nPDF set, with more flexible low x parameterisation at starting scale ...

- LHeC data have huge impact on low x gluon & sea uncertainties

First Thoughts on FCC-he

Ongoing work based on similar electron ERL to LHeC, with 50 TeV protons

Detector is scaled-up version of LHeC [shower depths x ln(50/7)~2]

-Total FCC-he H x-sec ~ 1 pb, lumi ~ 10^{34} cm⁻²s⁻¹, H \rightarrow HH x-sec ~0.5 fb in range?...

- Sensitive to quark density down to $x \sim 10^{-7}$ for Q²>1 GeV²,

- Gluons to $\sim 10^{-6}$,
- Hadronic final state to W \rightarrow 4 TeV

... Studies just beginning

Summary

- LHeC CDR 2012 + ongoing work
- Renewed interest following
 - 1) Possibility of 10³⁴ cm⁻² s⁻¹ luminosity
 - Higgs discovery, searches and new measurements at LHC→ fresh look at extent to which PDFs / QCD limits HL-LHC sensitivity.
 - 3) Associated technical developments (High gradient cavities, Energy recovery linacs)
 - 4) Longer term perspective of LHC and possibility of FCC

I HC P2

LHeC

- For more on recent updates, see also:
 - POETIC'15: (Nestor Armesto, Claire Gwenlan, Max Klein)
 - Slides from recent LHeC Chavannes Workshop (June 2015)
 - LHeC web: http://lhec.web.cern.ch