Diffraction at the LHC

Paul Newman (University of Birmingham)

QCD at Cosmic Energies Paris, 14 May 2013

- \rightarrow Elastic and Total Cross Sections
- \rightarrow Soft Diffractive Dissociation
- \rightarrow Hard Diffractive Dissociation
- \rightarrow Ultra-peripheral J/ Ψ Production
- → [Central Exclusive Production]

LHC Main achievement so far: Higgs

But what usually happens when hadrons Collide?

Typically t << 1 GeV²: non-perturbative

At fixed s:
$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{\mathrm{d}\sigma}{\mathrm{d}t}\Big|_{t=0} e^{Bt}$$

Slope parameter B measures mean impact parameter (~size of interaction region ~ range of strong force ~1-2fm).

The LHC Elastic Cross Section: TOTEM

- The most hermetic detector ever?
- Elastic scattering measurement using Roman pots at 220m

Elastic Cross Section (TOTEM Roman Pots)

Precise t dependence of elastic $(pp \rightarrow pp)$ cross section over wide range of |t| at LHC

 $d\sigma$

d*t*

- B increases compared with Tevatron \rightarrow 19.9±0.3±0.3 GeV⁻²
- Dip pos'n decreases compared with Tevatron \rightarrow 0.53±0.01 GeV²

Mean impact param increases with $\int s$ (longer-lived fluctuations)

Vacuum Exchange and the Pomeron

`Historically' ... pomeron trajectory

$$\alpha(t) = \alpha(0) + \alpha't \approx 1.085 + 0.25t$$

$$\frac{\mathrm{d}\sigma_{EL}}{\mathrm{d}t} \propto \left(\frac{s}{s_0}\right)^{2\alpha(t)-2}$$

Vacuum Exchange and the Pomeron

`Historically' ... pomeron trajectory

$$\alpha(t) = \alpha(0) + \alpha't \approx 1.085 + 0.25t$$

$$\frac{\mathrm{d}\sigma_{EL}}{\mathrm{d}t} \propto \left(\frac{s}{s_0}\right)^{2\alpha(t)-2}$$

Closely related to total x-sec via optical theorem $\sigma_{tot} = \frac{1}{2s} \sum_{X} \left| \int_{B}^{A} \sum_{X} \right|^{2} = \frac{1}{2s} \sum_{X} \int_{B}^{A} \sum_{X} \sum_{X} \int_{B}^{A} \sum_{X} \sum_{X} \int_{B}^{A} \sum_{X} \sum_{X} \int_{B}^{A} \sum_{X} \sum$

Vacuum Exchange and the Pomeron

Dedicated run (special optics @ $\beta^* = 90m$) \rightarrow |t| ~ 0.005 GeV²

- 10% extrapolation to t=0
- Luminosity measurement from CMS
- ρ from previous data

... one of four evaluations of σ_{tot} by TOTEM

Totem Total (and Elastic) Cross Section

Now published at both $\int s=7$ TeV and $\int s=8$ TeV

Js dependence of t Slopes and $\alpha \textit{'}$

-Comparing lower energy with TOTEM data suggests

 α ' larger than 0.25 GeV $^{\text{-}2}$

- There were similar observations at HERA ...
- Single pomeron exchange insufficient (absorptive corrections)

Inelastic Diffraction

Single diffractive dissociation

Additional kinematic variables:

$$\xi = \frac{M_X^2}{s} = 1 - \frac{E_p'}{E_p}$$

Double diffractive dissociation

$$\xi_Y = \frac{M_Y^2}{s}$$

At LHC, M_X , M_Y can be as large as 1 TeV in soft diffractive processes

Uncertainties in pre-LHC Predictions

Single dissociation

 $\sigma = 14mb$ (PYTHIA8) $\sigma = 10mb$ (PHOJET)

Double dissociation

 $\sigma = 9mb$ (PYTHIA8) σ = 4mb (PHOJET)

sqrt(s) = 19.6 GeVbb→bX 205 GeV/c 100 50 TOTAL 20d (<u>1</u>2) d (<u>1</u>2) 10 5 0.14 0.12 0.04 0.10 0.02 0.06 0.08

M²/s

(g m)

Parameterisations based on old low energy data, particularly poor for DD

Total Inelastic Cross Section

Soft Diffraction: $\boldsymbol{\xi}$ and Gap-size Dynamics

Deviations from this behaviour sensitive to $\alpha_{IP}(t)$ and to absorptive corrections \rightarrow c.f. multi-parton interactions

Soft Diffraction: ξ and Gap-size Dynamics

Deviations from this behaviour sensitive to $\alpha_{IP}(t)$ and to absorptive corrections \rightarrow c.f. multi-parton interactions

Up to event-by-event hadronisation fluctuations, ξ variable predictable from empty rapidity regions

$$\Delta \eta \approx -\ln \xi$$

~ flat gap $\frac{\mathrm{d} \sigma}{\mathrm{d} \Delta \eta} \approx 1$ const.
istributions $\mathrm{d} \Delta \eta$

Differential rapidity gap cross-sections

- Cross sections differential in `visible' rapidity gap size $\Delta\eta^{\text{F}}$
- ATLAS: $\Delta \eta^{F}$ extends from η = ±4.9 to 1st particle with p_t>200 MeV
- CMS: $\Delta \eta^{F}$ extends from $\eta = \pm 4.7$ to 1st particle with p_{t} >200 MeV

 $0 < \Delta \eta^{F} < 8$ (ATLAS) $0 < \Delta \eta^{F} < 8.4$ (CMS)

... corresponding (where diffraction dominates) to $10^{-6} < \xi < 10^{-2}$... or $7 < M_x < 700 \text{ GeV}$ [SD + low M_Y DD]

Corrected for experimental effects to level of stable hadrons

ATLAS Differential Gap Cross Section

- Precision between ~8% (large gaps) and ~20% ($\Delta\eta^{F}$ ~ 1.5)
- Large gaps measure x-sec for SD [+ DD with $M_Y < \sim 7 \text{ GeV}$]
- Small gaps sensitive to hadronisation fluctuations / MPI ... huge uncertainties
- PYTHIA best at small gaps, PHOJET > 50% high at $\Delta\eta^{\text{F}}$ ~ 1.5

Comparison between CMS and ATLAS

- Cross sections defined slightly differently (start $|\eta|$ of gap)
- Acceptable agreement within uncertainties ...

Large Gaps and Diffractive Dynamics

-Diffractive plateau with ~ 1 mb per unit of gap size for $\Delta \eta^F$ > 3 broadly described by models - PYTHIA high (DD much larger than in PHOJET)

- PHOJET low at high $\Delta\eta^{\text{F}}$

Large Gaps and Diffractive Dynamics

- Default PHOJET, PYTHIA have $\alpha_{IP}(0) = 1$; DL has $\alpha_{IP}(0) = 1.085$
- Fit to large $\Delta \eta^{F}$ data: $\alpha_{IP}(0) = 1.058 \pm 0.003$ (stat) ± 0.036 (syst)
- CMS find better description with $\alpha_{IP}(0) = 1.080$ than 1.104
- Also sensitive to the MC tune used.

... simultaneous Durham (KMR) description of ATLAS gaps data and elastic cross section data from ISR to Totem based on a single pomeron in a 3-channel eikonal model, with significant absorptive corrections in gaps / dissociation case

Total SD, DD Cross Secs Using Gaps: ALICE

ALICE: Integrated SD, DD cross secs at three \sqrt{s} based on gap rates and topologies [extrapolation into lowest ξ regions] - σ (SD) with $\xi < 0.05$ - σ (DD) with gap $\Delta \eta > 3$

- Good agreement with SPS data and wide range of model predictions.

- New data in restricted ξ ranges (CMS, TOTEM)

New CMS Data: Direct ξ Measurement

- Use forward calorimeter (CASTOR) tag to help distinguish SD from DD (sensitive to much lower M_{γ} than central detector).

- Directly reconstruct ξ using particle flow algorithm and cunning kinematics.

$$\widetilde{\xi}^{\pm} = \frac{\sum \left(E^i \pm p_z^i\right)}{\sqrt{s}} \simeq \frac{M_X^2}{s}$$

- Larger uncertainties, but more directly related to dynamics.

New CMS Measurement

- SD data (small low M_Y DD subtraction) compatible with PYTHIA8 with $\alpha_{IP}(0) = 1.08$ or 1.104

- Precise DD data (3.2 < M_Y < 12 GeV) prefer $\alpha_{IP}(0)$ = 1.08
- Data also sensitive to PYTHIA version and tune

New CMS Measurement

- Data with central gap ($\Delta \eta > 3$, within CMS acceptance) constrain DD cross section at large M_{χ} (>10 GeV) and M_{γ} (>10 GeV)

- Again compatible with PYTHIA8 with $\alpha_{IP}(0) = 1.08$ or 1.104

... increasingly detailed SD and DD data \rightarrow challenging theory

New TOTEM Data: Proton Tagged SD

 Mass regions inferred from gap sizes, but proton-tagged:
 ... first LHC measurement of t slope of single dissociation ...
 ~½ of elastic slope at low M_X, as in lower energy pp data B then falls with increasing M_X
 ... cross sections measured in three wide M_X ranges Lots of SD cross section at M_Y < 3.4 GeV

Diffraction at the Parton Level

HERA ep Collider:

Virtual photon probes pomeron partonic structure rather like inclusive DIS ...

>100 papers later .31

Diffractive Parton Densities (DPDFs)

DPDFs dominated by a gluon density which extends to large z

CMS: First Hard diffraction data from LHC ...

W and Z events with gaps at CMS

After pile-up corrections, ~1% of W and Z events exhibit no activity above noise thresholds over range 3 < $\pm \eta$ < 4.9 ... interpretation complicated by non-diffractive hadronisation fluctuations ...

 $ilde{\eta}$ (= 4.9 - $\Delta\eta$) end-point of gap - starting at acceptance limit

Gap-Lepton η **Correlation for W bosons**

Lepton pseudorapidity with + sign if lepton in same hemisphere as gap, else - sign.

Fit to combination of PYTHIA and POMPYT hard diffraction model suggests significant (~50%) diffractive contribution

-Diffractive signal required at low ξ (Data > PYTHIA ND)

-Fit linear combination of PYTHIA (ND) and POMPYT / PYTHIA8-SD+DD (DPDF-based diffractive models)

 \rightarrow Best description from PYTHIA6 with POMPYT x 0.23

 \rightarrow PYTHIA8, SD/DD contribution has to be multiplied by a factor ~2.5 and still gives inferior description

Corrected Differential Cross Section

Proton tagged data required for substantial further progress
→ removing complications from double dissociation and non-diffractive events with large gap fluctuations

Ultraperipheral J/ Ψ Photoproduction, the Low x Gluon Density and Saturation

- LHC protons as a source of photons: VM photoproduction ...
- Experimentally very simple
- Fairly well understood theoretically
- Sensitivity to square of gluon density at lowest order
- x ~ M_{Ψ^2} / W² can be small \rightarrow saturation / non-linear regime
- Can vary impact parameter (target blackness) with t 39

Exclusive J/\Psi Production in pp at LHCb

Ultra-peripheral Production at the LHC

Ambiguity on whether forward J/Y is produced by high energy photon and low energy gluons or vice versa ... dealt with on a statistical basis Very interesting kinematic range, and more data to follow (hopefully including t depdences)

Nuclear gluon shadowing factor vs x

... and in AA or pA:

Huge uncertainties in Nuclear gluon density, especially at low x ...

The J/ψ Way to Nuclear Structure

A. Caldwell¹, and H. Kowalski²

Max Planck Institute for Physics, München
 Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany

Abstract

We propose to investigate the properties of nuclear matter by measuring the elastic scattering of J/ψ on nuclei with high precision. The J/ψ mesons are produced from the photons emitted in high energy electron-proton or electron-nucleus scattering in the low-x region. The measurement could be performed at the future ENC, EIC or LHeC facilities.

e.g. arXiv:0909.1254

Exclusive J/\Psi Production in AA at ALICE

Separating out coherent part again a complicated issue

> Phys Lett B718 (2013) 1273 ALI-PREL-43382

Exclusive J/Y Production in AA at ALICE

- Apparently good discrimination (best agreement with EPS09 shadowing model).

- x values surprisingly large (<u>forward production heavily</u> dominated by high x gluon and low energy photon).

- pA forward data expected to reach x ~ 10^{-5}

Precise elastic & total cross section data

- Broadly in line with expectations
- Pomeron slope α ' non-universal

Increasingly Detailed Soft Diffractive Dissociation data

- Soft pomeron with intercept as expected works for soft dissociation
- Lowest M_X , M_Y not well understood
- `Global fits' needed to interpret

Summary

First Hard Diffractive Dissociation Data

- Limited by control over ND gap fluctuations and low $M_{\rm Y} \ DD$
- Proton-tagged data required to understand rapidity gap survival

Impressive Ultra-peripheral J/Ψ Data

- New high W region maps well onto HERA
- Interpretation in terms of low x gluon density?

Quick word on Central (Excl) Production

- First results from CMS on e^+e^- and $\mu^+\mu^-$ are consistent with QED prediction.

- No signal for $\gamma\gamma,\,\,$ jet-jet or other strongly produced central systems so far

... but watch this space ...

Double tagged events with central dijets

Investigating Low Mass Extrapolations

[Inelastic cross section excluding diffractive channels with $\xi < \xi_{cut}$]

- Integrating ATLAS gap cross section up to some max $\Delta \eta^F$ (equivalently min ξ_X) and comparing with TOTEM indicates that small ξ_X region underestimated in PHOJET and PYTHIA: - 14 mb with $\xi < 10^{-5}$, compared to 6 (3) mb in PYTHIA (PHOJET)

SHRiMPS (MB in SHERPA) Preliminary

Rapidity Gap Cross Section @7 TeV

Rapidity gap size in η starting from η $= \pm 4.9, p_T > 400 \text{ MeV}$ AC (tune-weights 1-000-0 MC (tune-unitweights-[p_T > 400 MeV] Rapidity gap size in η starting from $\eta = \pm 4.9$, $p_T > 800$ MeV MC (tune-weights_1-000-0 MC (tune-unitweights-coo $[p_{T} > 800 \text{ MeV}]$ ******* 7 5 $\Delta \eta^F$

These distributions are complementary to particle spectra / correlations and dedicated underlying event measurements and should be described by any model that aims to provide a `complete' minimum bias description

Impressive (but still not perfect) description ...

Total Inelastic pp Cross Section (e.g. ATLAS)

• Using MBTS trigger $(2.1 < |\eta| < 3.8)$, miss only elastic (pp \rightarrow pp) and lowest mass diffraction (pp \rightarrow pX etc)

- Unextrapolated result below PYTHIA and PHOJET defaults
- 5-15% extrapolation yields total inelastic cross section
- Extrapolation includes large uncertainty on low mass dissociation