

Paul Newman Birmingham University

Lepton-hadron collider based on the high lumi LHC
Can we add ep and eA collisions to the existing LHC pp, AA and pA programme?

LHeC / FCC-he Context

LHeC CDR, July 2012 [arXiv:1206.2913] CERN Courier, June 2014 Lepton-hadron scattering at the TeV scale ...

LHeC: 60 GeV electrons x LHC protons & ions → 10³⁴ cm⁻² s⁻¹ → Simultaneous running with ATLAS / CMS sometime in HL-LHC period

FCC-he: 60 GeV electrons x 50 TeV protons from FCC

Baseline[#] Design (Electron "Linac")

Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Two 10 GeV linacs,
- 3 returns, 20 MV/m

 Energy recovery in same structures
 [CERN plans energy recovery prototype]

- ep lumi $\rightarrow 10^{34}$ cm⁻² s⁻¹ $\rightarrow \sim 100$ fb⁻¹ per year $\rightarrow \sim 1$ ab⁻¹ total
- eD and eA collisions have always been integral to programme
- e-nucleon Lumi estimates ~ 10^{31} (10^{32}) cm⁻² s⁻¹ for eD (ePb)

[#] Alternative designs based on electron ring and on higher energy, lower luminosity, linac also exist

Detector Design Overview

- Present size 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
- Forward / backward asymmetry reflecting beam energies
- Demanding tracking \rightarrow high fraction of pixels, wide acceptance

Detector Details

 Long tracking region (pixels + strips) → 1° electron hits
 2 tracker planes

Low x / $M_x \rightarrow$ novel QCD / unitarity Medium x / $M_x \rightarrow$ precision H and EW High x / $M_x \rightarrow$ new particle mass frontier

Should we care? PDF Unc's for LHC Higgs

contributions

of PDFs in HL-LHC era

 $\frac{\Delta\mu}{\mu}$

LHeC Impact on LHC Higgs PDF Unc'ty

60 Cross Section (pb) iHixs1.3 58 M = 125 GeV NNPDF2.1(0.121) 56 NNPDF2.1(0.119) 54 MSTW08 HERA15 CT10 52 124 GeV 50 125 GeV ABM11 partons 48 from LHeC JR09VF 46 CO MK 44 0.2 0.1 0.3 0.80.9 0.50.70 0.40.6 arbitrary

NNLO pp-Higgs Cross Sections at 14 TeV

... needs N³LO Higgs calculation

... needs improved α_s measurement (also @ LHeC)

c.f. experimental uncertainty of 0.25%

Aside:

LHeC at 10^{34} cm⁻²s⁻¹ is also a significant Higgs factory, offering e.g. ~1% H \rightarrow bbbar coupling,

e.g. High Mass 2 Gluino Production

- Signature is excess @ large invariant mass
- Expected SM background (e.g. $gg \rightarrow gg$) poorly known for s-hat > 1 TeV.
- Both signal & background uncertainties driven by error on gluon density ... essentially unknown

for masses much beyond 2 TeV

Limitations from High x Sea Quarks

BSM sensitivity through excess in high mass Drell-Yan limited by high x antiquark uncertainties as well as valence

Studies with Simulated LHeC Data

- First generation simulated `pseudo-data' produced with reasonable assumptions on systematics (typically 2x better than H1 and ZEUS at HERA).

-Second generation pseudo-data (with full detector simulation) in progress

	LHeC	HERA
Lumi [cm ⁻² s ⁻¹]	10 ³³	1-5*10 ³¹
Acceptance [°]	1-179	7-177
Tracking to	0.1 mrad	0.2-1 mrad
EM calorimetry to	0.1%	0.2-0.5%
Hadronic calorimetry	0.5%	1-2%
Luminosity	0.5%	1%

- NLO DGLAP fit using HERAPDF1.0, including:
 - LHeC NC and CC e⁺p and e⁻p cross sections
 - HERA-1 combined H1+ZEUS data
 - Fixed target BCDMS data with W>15 GeV (where stated)
 - ATLAS 2010 W, Z data (where stated)

Gluon and Sea Quarks at LHeC

- No current gluon constraints below $x \sim 10^{-4}$. LHeC goes to $x \sim 10^{-6}$ with < 5% precision
- High x poorly known (current PDF sets differ) \rightarrow searches ...
- Sea intimately connected to glue

Valence Quarks at LHeC

Disentangle sea and valence through CC, xF_3 etc

- Also, precision light quark axial / vector couplings, weak mixing angle, α_s and full flavour decomposition ...¹⁵

Precision α_s

- Least constrained fundamental coupling by far (known to ~1%)
- Do coupling constants unify (with
- a little help from SUSY)?
- (Why) is DIS result historically low?

Simulated LHeC precision from fitting inclusive data
→ per-mille (experimental)
→ also requires improved theory

Context of Precision α_s

Snowmass13 report - arXiv:1310.5189

Method	Current relative precision		Future relative precision	
at a - out shap as	$expt \sim 1\%$ (LEP)		<1% possible (ILC/TLEP)	
e e evi snapes	thry $\sim 1-3\%$ (NNLO+up to N ³ LL, n.p. signif.) [27]		$\sim 1\%$ (control n.p. via $Q^2\text{-dep.})$	
e^+e^- jet rates	$expt \sim 2\%$ (LEP)		<1% possible (ILC/TLEP)	
	thry $\sim 1\%$ (NNLO, n.p. moderate) [2]	8]	$\sim 0.5\%$ (NLL missing)	
precision EW	$expt \sim 3\% (R_Z, LEP)$		0.1% (TLEP [10]), 0.5% (ILC [11])	ner mille
	thry $\sim 0.5\%$ (N ³ LO, n.p. small) [9,2]	9]	$\sim 0.3\%$ (N4LO feasible, ~ 10 yrs)	per mine
τ decays	expt $\sim 0.5\%$ (LEP, B-factories)		< 0.2% possible (ILC/TLEP)	
	thry $\sim 2\%$ (N ³ LO, n.p. small)	8]	$\sim 1\%$ (N ⁴ LO feasible, ~ 10 yrs)	
ep colliders	$\sim 1-2\%$ (pdf fit dependent) [30,3]	l],	0.1% (LHeC + HERA [23])	per mille
	(mostly theory, NNLO) [32,3	3]	$\sim 0.5\%$ (at least $\rm N^3LO$ required)	P
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t})$		< 1% challenging	
	(NLO jets, NNLO tt, gluon uncert.) [17,21,3	4]	(NNLO jets imminent [22])	
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)		$\sim 0.3\%$	
	(limited by accuracy of pert. th.) [35–3	7]	(~ 5 yrs [38])	

... tensions between lattice and DIS α_s results as a sensitive probe of new physics?...

Cross Sections and Rates for Heavy Flavours

e.g. Beauty Production

Precise c, b measurements from impact parameter distributions (modern Si trackers, LHeC F,^{bb} (RAPGAP MC, 7 TeV x 100 GeV, 10 fb⁻¹, ε_b=0.5) beam spot 15 * 35 μ m², F₂^{bb} X 10 100000 GeV².i=11 $O^2 = 10000 \text{ GeV}^2$, i=9 increased HF rates at $O^2 = 2000 \text{ Ge}$ $O^2 = 650 \text{ GeV}$ higher scales). 10 $O^2 = 200 \text{ GeV}$

(Assumes 10 fb⁻¹ and - 50% beauty, 10% charm efficiency - 1% uds \rightarrow c

mistag probability.

- 10% c \rightarrow b mistag)

Systematics at 10% level

e.g. Strange and Anti-strange Quarks

Evidence from LHC that strange density is larger than thought: SU(3) symmetric sea?...

anti-strange density [3^j]

Assuming 10% charm tagging efficiency, 1% light quark background

Low-x Physics and Parton Saturation

Somewhere &
 somehow, the low
 x growth of cross
 sections must be
 tamed to satisfy
 unitarity ...
 non-linear effects

→ new high density, small coupling parton regime of non-linear parton evolution dynamics (e.g. Colour Glass Condensate)? gluon dynamics → confinement and hadronic mass generation

Some limited evidence from HERA, LHC picture (e.g pPb) unclear

LHeC: Accessing saturation region at large Q²

n 1/x

LHeC delivers a 2-pronged approach:

Enhance target `blackness' by: ep 1) Probing lower x at fixed Q^2 in ep [evolution of a single source] DILUTE REGION 2) Increasing target matter in eA [overlapping many sources at fixed kinematics ... Density ~ $A^{1/3}$ ~ 6 for Pb ... worth 2 orders of magnitude in x]

... Reaches saturated region in both ep & eA inclusive data according₂to models

In A

[fixed Q]

DENSE REGION

eA

Establishing and Characterising Saturation With 1 fb⁻¹ (1 month at 10^{33} cm⁻² s⁻¹), F₂ stat. < 0.1%, syst, 1-3% F_L measurement to 8% with 1 year of varying E_e or E_p

- LHeC can distinguish between different QCD-based models for the onset of non-linear dynamics
- Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 v F_L$ in ep or F_2 in ep v eA

Exclusive / Diffractive Channels and Saturation

v*m

р

e

9 3 3

min

V

X (M_x)

р

р

- 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon
- 2) Additional variable t gives access to impact parameter (b) dependent amplitudes
 - \rightarrow Large t (small b) probes densest packed part of proton?

e.g. J/ ψ Photoproduction

• Significant non-linear effects expected in LHeC kinematic range.

• Data shown are extrapolations of HERA power law fit

t Dependence of Elastic J/ ψ Photoproduction

• J/ ψ photoproduction double differentially in W and t ...

- Precise t measurement from decay μ tracks over wide W range extends to $|t| \sim 2 \ GeV^2 \ and \ enhances sensitivity to \ saturation effects$

• Measurements also possible in multiple Q² bins

... powerful probe!

- `Proper' QCD (e.g. large E_T) with jets and charm accessible
- New diffractive channels ... beauty, W / Z bosons
- Unfold quantum numbers / precisely measure new 1⁻ states

LHeC as an Electron-Ion Collider

Four orders of magnitude increase in kinematic range over previous DIS experiments.

Current knowledge for x <~ 10⁻² almost zero.

→LHeC revolutionises our view of partonic structure of nuclei.

 \rightarrow Study interactions of densely packed, but weakly coupled, partons

 \rightarrow Ultra-clean probe of passage of `struck' partons through cold nuclear matter

Current Status of Nuclear Parton Densities

constrained for $x < 10^{-2}$

- Studies in context of EPS'09 nPDF set, with more flexible low x parameterisation at starting scale ...

- LHeC data have huge impact on low x gluon & sea uncertainties

First Thoughts on FCC-he

Ongoing work based on similar electron ERL to LHeC, with 50 TeV protons

Detector is scaled-up version of LHeC [shower depths x ln(50/7)~2]

-Total FCC-he H x-sec ~ 1 pb, lumi ~ 10^{34} cm⁻²s⁻¹, H \rightarrow HH x-sec ~0.5 fb in range?...

- Sensitive to quark density down to $x \sim 10^{-7}$ for Q²>1 GeV²,

- Gluons to $\sim 10^{-6}$,
- Hadronic final state to W \rightarrow 4 TeV

... Studies just beginning

Summary

- LHeC CDR 2012 + ongoing work
- Renewed interest following
 - 1) Possibility of 10³⁴ cm⁻² s⁻¹ luminosity
 - Higgs discovery, searches and new measurements at LHC→ fresh look at extent to which PDFs / QCD limits HL-LHC sensitivity.

I HC P2

LHeC

- Associated technical developments (High gradient cavities, Energy recovery linacs)
- New Committee and Working Group structure set up by CERN, to further develop LHeC, also in context of FCC.
- More in parallel session talks (Nestor Armesto, Claire Gwenlan), in slides from recent LHeC Chavannes Workshop (June 2015) and at LHeC web: http://lhec.web.cern.ch,